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FRACTURE ANALYSIS AND
CORROSION  FATIGUE IN PIPELINES

Scope of the Project

The primary objectives of this research program are

(a) Classification and assessment of the relative importance
of various types of weld defects

(b) An in-depth study of the problem of interaction between
two flaws and between flaws and pipe surfaces

(c) Fracture analysis of pipes with crack arrestors

(d) The effect of crack orientation on the strength of pipes

(e) The development of quantitative understanding of the early
stage of chemical reactions in relation to the corrosion
fatigue crack initiation and propagation .

(f) Elucidating the mechanisms for corrosion fatigue crack initia-
tion and propagation, including the influences of chemical,
mechanical and metallurgical variables in pipeline steels

(g) The formulation and evaluation of models for predicting
cracking response and service performance by using a combined
fracture mechanics, surface chemistry and materials science
approach.

In this first annual report the completed part of the research program
is described and the results are presented.

General Informétion

The research presented in this report is supported by the U.S.
Department of Transportation, 0ffice of University Research, and by
the U.S. Department of Interior, Minerals Management Service. Mr. Duglas
B. Chisholm of DOT Research and Special Programs Administration,
Office of Pipeline Safety Regulation is the Project Monitor. Dr. Charles



E. Smith, Research Program Manager, Technology Assessment and Research
Branch, Minerals Management Service is the Department of Interior
technical representative.

Part I of the report describes the theoretical research carried
out by Professor F. Erdogan, the Principal Investigator, Mr. B. Aksel
and Dr. X-H Liu. Part II presents the experimental work which was
carried out by Professor R.P. Wei, the Co-Principal Investigator and
Mr. S. Chiou.
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FRACTURE ANALYSIS AND CORROSION
FATIGUE IN PIPELINES

PART 1
THE FLAW INTERACTION STUDIES

In this part of the report various kinds of flaws which may be
found in pipelines, particularly in girth welds are classified and the
problem of interaction between the stress fields of typical flaws are
considered. The emphasis in the study is on the application of fracture
mechanics techniques to the problem of flaw evaluation.

1. INTRODUCTION

The standards of acceptability of welds in pipelines are generally
based on certain empirical criteria in which primary importance is placed
on flaw length. Sbécifica]]y for girth welds such standards are described
in API STANDARD 1104 prepared by the "American Petroleum Institute -
American Gas Association Joint Committee on 0il and Gas Pipeline Field
Welding Practices". However, the API Standard also recognizes fitness
for purpose criteria based on fracture mechanics methodology as an alter-
native technique for flaw evaluation. The advantage of the fracture
mechanics approach is that since it takes into account all factors which
may be relevant to the failure of the pipe such as the type and the rela-
tive size, shape, orientation and location of the flaw, the effect of
multiple flaws, the nature of the applied stresses, and the environmental
conditions, it could be somewhat more precise than the empirical rules
which are largely based on the flaw length.

In fracture mechanics approach to flaw evaluation it is implicitly
assumed that the material contains some macroscopic flaws which may form
the nucleus of fracture initiation. Generally, these flaws may be mapped
by using an appropriate nondestructive flaw detection technique. Aside
from the weld defects the pipe may also have flaws which may be external
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in origin. Generally the initial phase of the failure in a pipe is the
rupture of the net ligament adjacent to the critical flaw in the pipe

wall. In most cases the resulting through crack is arrested and the

pipe is repaired before further damage. However, in some cases the
resulting through crack, after some stable growth, may become unstable
leading to circumferential pipe break or dynamic propagation of an axial
crack. The initial rupture of the net Tigament in the pipe wall is usually
preceded by some subcritical crack growth due to fatigue, corrosion
fatigue, or stress corrosion cracking and the actual net ligament rup-

ture is generally a ductile fracture process.

Therefore, it is seen that in order to apply fracture mechanics analy-
sis to welded pipes, first one needs to characterize the material itself
(the base metal, the weld material and the material in the heat affected
zone) with regard to fatigue and corrosion fatigue crack propagation,
stress corrosion cracking, fracture toughness and ductile fracture. Next,
~ for a given flaw geometry and loading conditions one has to solve the |
related mechanics problem to calculate the appropriate fracture mechanics
parameter such as the stress intensity factor, the crack tip opening
displacement, or the J-integral. The third step in the process would
be the selection or development of a proper failure theory and the appli-
cation of the related quantitative failure criterion. The type of
analysis and the experimental work to be performed and the particular
criterion to be used are clearly dependent on the expected or the most
Tikely mode of failure.

Even though the primary applied load in the pipelines is the internal
pressure which is largely time-independent, there may be some small vari-
ations in pressure and some vibrations particularly near the pumping
stations which may add a fluctuating component to the static stresses
just high enough to cause concern. There are also secondary stresses
which are mainly time-varying in nature and therefore would enhance the
subcritical crack propagation. Some of the sources of these secondary
stresses are misalignment and fit-up, daily, seasonal and other thermal
fluctuations, ground settlement and possible earthquakes, axial constraint,
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and gross bending in offshore piping due to buoyancy -and other hydro-
elastic effects. It should be added that the "stress transients" may
also play a major role in. the subcritical crack propagation and particu~
Tarly in the final phase of the fracture process, if one takes place.
These stresses are generally caused by the pressure waves resulting from
changes in flow rate due to partially or fully closing of the valves.

In the case of pipes carrying liquids such as petroleum pipelines this
is known as the "water hammer! effect due to which the peak pressure

may be as high as multiples of the then operating pressure in the pipe.
In the natural gas pipelines, this increase in the peak pressure may

be somewhat more moderate. Nevertheless, in either case, such sudden
surges of pressure are probably responsible in most cases for the final
stage of the net ligament failure in the pipe wall resulting in leaks or
in a catastrophic failure,

A detailed description and classification of weld discontinuities
(including "flaws" which are considered to be undesirab]e) and a critical
review of the literature as well as very extensive references on the sub-
Ject up to 1976 may be found in [1]. The problem of interaction between
two (planar) cracks and some empirical rules to define a single equiva-
lent crack are discussed in [2]. The procedures dealing with the sub-
critical crack propagation by using the tools of linear elastic fracture
mechanics (LEFM) is highly standardized and may be found, for example,
in [3] or [4]. Similarly, the process of brittle or quasi-brittle frac-
ture is re]ative1y‘wei]—understoodgand is easily dealt with techniques
based on LEFM and the concept of fracture toughness. The process which
1s not well-understood and not standardized, however, is the ductile
fracture. The Appendix in the API Standard 1104 concerning the fracture
mechanics applications is based on the critical crack tip opening dis-
placement concept, whereas the J-integral seems to be more widely used
in pressure vessel technology. The description, some applications of
and extensive references on the crack opening displacement approach %o
fracture may be found in [6]-[7]. Application of a general fracture
instability concept based on the crack opening displacement to shells and
b1ates with a part-through crack is described in [8].
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In this report the emphasis is on the filaw evaluation based on
fracture mechanics teéhniques. In particular this part of the study
is concerned with the effect flaw-flaw and flaw-boundary interaction on
the fracture mechanics parameters. After classifying possible flaws
which may be found in welds from a viewpoint of their importance in
fracture mechanics applications, some of the more important flaw inter-
action problems have been identified, their method of solution is
briefly discussed and- some typical and useful results are given.

2. TYPES OF FLAWS

In this report our primary interest in flaws is from a viewpoint
of their influence on enhancing or inhibiting fracture initiation and
propagation in the pipe. Generally a flaw may be defined as a discon-
tinuity in material constants or geometry. Variety of inclusions come
under first and notches, pores and cracks come under the second group
of flaws. A common feature of all flaws is that they disturb or perturb
the stress field around them. Generally this perturbation gives rise
to a stress concentration around the flaw. However, for certain types
of flaws there may also be a reduction in key components of the stresses.
With their importance in the application of fracture mechanics analysis
in mind, in this study we will, therefore, introduce a somewhat unconven-
tional classification of flaws.

2.1 Pores and Solid Inclusions

Pores are the holes or voids in the material having entirely smooth
surfaces {Fig. 1.al). If o, refers to the magnitude of the uniform
stress field outside the perturbation region of the pore, then the pore

teads to a stress concentration which is of the form

o =Ko , K= A R . (1)

where K is the "stress concentration factor", A is a (finite)} constant
which depends on the geometry of the medium and p is radius of curvature
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of the pore. General]y K is greater than one. We note that surface
notches with finite radius of curvature p would also come under this
category.

Solid inclusions are the second phase materials in the medium also
naving entirely smooth surfaces. The modulus Ei of the inclusion may
be greater or less than the moduTus E of the matrix or the base material,
the two 1imiting cases being the rigid inclusion (Ei=m) and the hole
(E1=0). If E1<E, qualitatively the perturbed stress field of the inclu-
sion is similar to that of a pore, meaning that there would be a stress
concentration around the inclusion., On the other hand, if E;>E there
would be a reduction in the net section stress. However, in this case
there would also be a stress concentration in other planes perpendicular
to the applied stress. For example, Fig. 2 shows the stress distribution
in a medium containing a circular inclusion under plane strain or plane
stress conditions. Note that for c>R around the inclusion there is
indeed some stress concentration. In this figure, n is the shear modu-
lus, x = 3-4v for plane strain, and « = (3-v}/(1+v) for plane stress,
v being the Poisson's ratio.

2.2 Pores, Notches and Solid Inclusions with Sharp Corners

From Eq. (1) and Fig, 2 it may be seen that from a viewpoint of
failure analysis a distinguishing feature of the pores, notches and
solid inclusions with smooth surfaces is that the stress state around
such flaws is always bounded. Eq. (1) also indicates that as the root
radius p of the notch tends to zero, the stress state around notch tip
would tend to infinity. Particularly in problems concerning brittie
fracture and fatigue crack initiation such flaws may have to be treated
differently. In these nonplanar flaw problems it is said that the
inclusion or the notch tip is a point of stress singularity around which
the stress state would have the following behavior:

o35 =% » 0<Re(d) <1/2, - (2)
r
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where k and A are constants representing the strength and the power of
the stress singularity and r is a (small) distance from the notch tip.
Generally, Eq. (2) is valid for values of the material angle 8 > 7

(Fig. 1 b1, b2, b3). Even though the term "stress intensity factor" is

- commonly used in relation with crack problems for which A = 0.5, in

the more general problem leading to an expression such as (2) k is also
called the "stress intensity factor”.

In the case of notches with a material angle = < 8 < 2r the power
of singularity A is dependent on & only and may be obtained from (see,
for example, [9] where the general problem of bimaterial wedge under
variety of boundary conditions are discussed)

cos[2(a-1)8] - 1 + (x=1)2(1-cos28) = 0 . (3)

Fig. 3 shows the solution of (3) in the relevant range.

2.3 Cracks and Flat Inclusions

These are simply the planar flaws in which the material angle &
(theoretically) is 2n (Fig. 1 ¢1, ¢2). Again, the inclusion may be
elastic or rigid, the crack being a 1imiting case with zero modulus.

In all planar inclusion as well as crack problems eq. (2) is valid with
A = 0.5,

The bulk of the material in this report is devoted to the problem
of interaction between two flaws or a flaw and a boundary. Since the
initial phase of the fracture problem is invariably a subcritical crack
growth and since the stress intensity factor is the primary fracture
mechanics parameter used in analyzing the subcritical crack growth pro-
cess, the quantitative results in the interaction problems considered are
mostly the stress intensity factors.
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3. INTERACTION BETWEEN A CRACK AND A SOLID INCLUSION
OR A PORE

In this section we will consider the problem of the interaction
between a solid elastic inclusion and a Tine crack. It will be assumed
- that the inclusion and the crack are sufficiently close to each other
so that their perturbed stress fields interact with each other, It will
also be assumed that the crack-inclusion region is sufficiently far away
from the boundaries so that their combined perturbed stress field does
not interact with the boundaries, Consequently, for the purpose of
calcutating the perturbed stress state and the stress intensity factors
it may be assumed that the domain is infinite,

3.1 Plane Strain Problem for a Circular Inclusion or Pore

Consider the general crack-inclusion problem described in Fig. 4.
Assume that the composite medium is under plane strain or generalized
plane stress conditions, with g and «s, (1=1,2) referring to the elastic
constants (u the shear modulus, Ky = 3 4v for plane strain, and kg =
(3- vy )/(1+u ) for plane stress, v; being the Poisson's ratio), Let ut and
u, be the dasp]acement components in t and w directions shown in Fig.
4(b). By defining

9(t) = 5 (u-up) , gy(t) = & (u-u)) . (4)

and by referring to [10] for details, the problem may be formulated in
terms of a pair of singular integral equations of the following form:

&

1 ey .

L J§1 ki3 (tat)ay(to)dty = L py(t)  (i=1,2) (5)
t
2

where the kernels kij are known functions and have a Cauchy type singu-
larity. The known input functions Py and P, are given by
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L) = o (6€) L y(t) = o (te) b (tyctet) (6)

S and Ot being the stress components at the point (t,c) in the plane
with inclusion but without a crack. For example, for a plane under
uniform tension o, away from the ihclusion these stresses are given by
Fig. 2. The solution of (5) is of the following form

Qj(t) = Gj(t)//(t"tz)(t]‘f) s (3=1,2) (7)

where G] and 62 are unknown bounded functions. After solving the inte-
gral equations the Modes I and II stress intensity factors at the crack
tips ty and t2 may be defined by and obtained from the following expres-
sions:

| 2uy 14
- . 1M )
lty) = Tim 25 o, (ta0) = - g, 2EHTE) gy(t)
1
. 2uy STETET
1:—>-1:.1 1 1:-->1.'.-I
2u
q{ty) = Tim VIS o (t.c) = T;é?—1im VITEE,) g,(t) »
t-+t _ Ttt ,
2 2
. | Zup
kZ(tZ) = 112 ¢21t2-t§ cwt(t,c) = T;ET l1$ v?(t-tzj gi(t).

(8a-d)

In the absence of a crack the stress components on a line perpendicu-
lar to the loading direction are shown in Fig. 2 for an elastic inclusion.
Similar results for a circular hole (i.e., for u2=0) are shown in Fig. 5.

The stress intensity factors calculated at the crack tips tT and t2
are shown in Figures 6-13. The results shown in the figures are normal-
ized with respect to covﬁ'where % is the tensile stress acting on the
plane away from and perpendicular to the crack and a is the half crack
length. Thus, the normalized stress intensity factors kij shown in the
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Figurell., Stress intensity factors for a crack in the matrix
containing an elastic inclusion (uz =23u1, c=R, b-a=0.2R,
a =constant). ) :
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Figure 12. Stress intensity factors for a crack in the matrix
containing a circular hole (u2 =0, c=2.2a, R= Za)‘. .
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Figure'13. Stress intensity factors for a crack in the matrix
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figures are defined by

k.(t.
K. . _ Nty (i, = 1,2) (9)

. s
1 Uoﬂi

where ki(tj) are given in (8), Figures show the results for only two
cases, namely a circular hole (i.e., u2=0) and a stiffer elastic inclu-
sion with elastic constants

(u2/u1) =23 , k1 = 1.6, ko = 1.8, (10)

Fig. 6 shows the results for a symnetrically located radial crack.
Note that as the (inner) crack tip t, approaches the boundary (i.e., for
b-R+a) the stress intensity factor k1(t2) tends to infinity for the case
of hole and to zero for the case of inclusion. Qualitatively the results
given'in this figure are very general, that is if the perturbed stress
fields of a crack and a hole (or a pore) interact, then the stress inten-
sity factors at the crack tips would be greater than those which would
be obtained for the cracked medium without the hole. For example, note
that in Fig._ﬁ the stress intensity factors for ny=0 are greater than
cofﬁl the value for the cracked plane without a hole, and approach this
value as the crack moves away from the hole (i.e., as ba»). Similar
trend would be observed for an inclusion the stiffness of which is less
than that of the cracked medium (i.e., for u2<u])- On the other hand,
if the plane contains a stiffer inclusion (i.e., for p2>u1), then the
stress intensity factors are smaller than coﬁf.

The results shown in Figures 7-13 are self-explanatory. Depending
on the location of the crack, one may observe some trends in these
results which are opposite to that observed for the symmetric radiail
crack shown in Fig. 6. These trends, however, may easily be explained
by examining the stress fields perturbed by an inclusion or a hole which
are shown in figures 2 and 5. By examining the signs of the Modes I and
Il stress intensity factors, from the results given in these figures one
may easily conclude that generally for the crack tip near the matrix-
inclusion boundary the crack would propagate towards the boundary if
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u2=0 O Lo<Hys and away from the boundary if Ho>H7 - This conclusion is |
based on the analysis giving the plane of the maximum cleavage stress

at the crack tip. The details of the analysis and its experimental
verification may be found in [12],

In another class of crack-inclusion interaction problems both the
inclusion and the matrix material may contain a crack. For symmetrically
Tocated radial cracks the general problem is described by Fig. 14, The
details of the analysis of this problem may be found in [11]. Figures‘
15-27 show some calculated results, In this problem the formulation
given in [11] and Fig. 14 allow the consideration of the. special cases
of a crack terminating at the interface (i.e., b=R+a, ﬁZ#O in Fig. 6
or a,=h,, aj=a in Fig. 14), and the crack going through the interface
(i.e., by=a=a; in Fig. 14). In these special cases it is shown that
[11] the point (x=a, y=0) (Fig. 14) is a point of stress singularity and

the stress state in a close neighborhood of it has the following form:

o33(rs0) = %5 935(0) (1) 5 (0s<D) (1)

where r and o are the polar coordinates centered at the singular po{nt,
95 j is a bounded function and the stress intensity factor k is a con-

stant. The stress intensity factors k = k{a) given in this section are
defined in terms of the related cleavage stresses as- follows (Fig. 14):

(i) crack in the matrix (—a<a2<b2<a = a1<b1):

k(a) = lim vZ (a-x)%o,. (x,0) , | (12)
X

-3 2yy

(i1} crack in the inclusion (--a<a2<b2 = a<a1<b1):

k(a) = Tim vZ (x-a)* :0
(a) Hn (x-a) a1y¥(x ) (13)
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Figure T4. Inclusion-crack geometry.
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(i11) crack crossing the boundary (—a<a2<b2 =3-= a1<b1):

In this case for simplicity we define the following normal and
shear cleavage stress intensity factors

ko (a) = 1im yY 14 (@s¥) » (normal cleavage) , (14)
y~0
k..(a) = Tim yY “1xy(a’Y) s (shear cleavage) . (15)

Xy y-0

The first special problem (i) with a,=b, corresponds to the 1imit-
ing case of the problem considered in Fig., 6. In the problem of a crack
terminating at the bimaterial interface such as the cases (i) and (ii)
mentioned above, the power of the stress singularity (d or g} is
highly dependent on the stiffness ratio uz/ﬁ1 and is relatively insensi-
tive to the Poisson's ratios (or K1 and KZ). For the crack geometry
a2=b2, ar=a, b]>a, Fig. 14, Table 1 shows the effect of “2/“1 on B.

[t may be seen that for (“2/“1)<1 the power g is greater than 0.5, mean-
ing that if the stiffness of the inclusion is less than that of the
matrix, then the stress singularity is stronger than the corresponding
homogeneous case. Similarly, if Ho>ly then g<0.5. This is the reason
for the asymptotic trends observed in Fig. 6 for the stress intensity
factor k(a) as b»R+a. Table 1 also gives the corresponding stress inten-
sity factors calculated from (12).

For this problem, to give some idea about the nature and the rela-
tive magnitude of the crack surface displacement, Fig. 15 shows some
calculated results. Here v(x,0) is the crack surface displacement in
y direction.

Figures 16 and 17 show the stress intensity factors for a crack
Tocated in the inclusion. The 1imiting values of the stress intensity
factors shown in these figures for the crack length 2c, approaching zero
are obtained from uniformly loaded "infinite" plane solution with the
applied stress state away from the crack region given by the uncracked
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Table 1.

The effect of modulus ratio on the
stress intensity factors for a crack
terminating at the interface (a1= a,
bi/a=2, Ky =Kk, =1.8, €1 =(b1-a)/2).

k(b,) (a)
rn=;% s g /;* ckca'B
o "1 o-1
0 2.808
0.05 0.81730 1.615 1.053
1/3 0.62049 1.229 0.5836
1.0 0.5 1.000 1.000
3.0 0.40074 0.8610 1.299
10.0 0.33277 0.7969 1.389
23.0 0.30959 "0.7796 1.375
100 0.29387 0.7697 1.345
300 0.28883 0.7667 1.348
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Figure 15. Crack surface displacement for a crack
in the matrix with one tip on the interface
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Figurel6. Stress intensity factor for a symmetrically
located crack in the inclusion ‘(1<1 =K2=].8).
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Figure 17. Stress intensity factors for a crack located
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inclusion solution [13], namely

- (14 Ju
a 172 1 ‘ 1

} 5 |xl<a . (16}

a (x 0) - & ['i ) a2 112('41'1)“111(‘(2"1) al; 3(1-‘2'111)

]s IX|>3 ’

yy ) 2x2 2u2 + uT(K2-1) TXF 2 u1+z]u2
(17
(0 =0 5 oy (x,0) =0 . (18)

By using (16) it may be shown that for the crack in the inciusion the
stress intensity factor has the following Timit:

k. reletl) MM
C 2wy Clutuglegtl) oupheqy

Tim (19)

'c2+0 Oo/EE

Fig. 16 shows the results for a symmetrically located crack. The results
‘for an eccentric crack are shown in Fig. 17 (see Fig. 14 for notation).

Some typical results for the case in which both the inclusion and
the matrix or base material contain a crack are shown in Fig. 18.

The stress intensity factor for a completely cracked inclusion
(i.e., for a,=-a, by=a, a1=b1) is given in Table 2. The stress inten-
sity factor k(a) given in this table is defined by (13) where o is the
power of stress singularity.

The stress intensity factors for a crack crossing the interface are
given by figures 19 and 20. In these figures X=2, and x=b-I are conven-
tional crack tips for which the stress state has square-root singularity
(i.e., 0'=p'=0.5). For the point of the intersection of the crack with
the boundary (x=a) the normal and shear cleavage components of the stress
intensity factor kxx and kxy
trends of the stress intensity factors observed in these figures as a
crack tip approaches the boundary x=a'are again due to the change in the

-30-

are defined by (14) and (15). The asymptotic



Table 2.

Stress intensity factor for
a completely cracked inclusion.

K1 =Ky =1.8 Ky=2.2, Ko=1.8 ky=1.8, Kp=2.2 Ky TKy =2.2
. o e |, k)
Goa Ty
0.36621 0.38087/0.7848(0.32027{1.046 }0.33845
0.45025 0.4702810.9456(0.42123 1.174
0.5 0.5199110.9209 0.47724(1.107
0.57451 0.59188|0.8165]0.55687|0.9465
(0.67885 0.6912410.61940.66380}0.6940
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power of stress singularity. For example, in Fig. 19 for b1>a the stress
components around the singular point (x=a, y=0) are (see (14) and (15})

Lk (a) (a)
oy (asy) £ ;‘;‘ s oy (asy) 2 —-—Yy—;— y = 0.27326. (20)

On the other hand, for b1=a (i.e., the case of a crack in the inclusion
terminating at the boundary) the stress state around (x=a, y=0) is
given by (see eq. (13))

s —L)—f 5(6) 5 «=o0.82580 , (21)
J vZ

where r and 6 are the polar coordinates centered at the point (x=a, y=0)
(i.e., r=y for ¢ = n/2). Thus, as b1+a from (20) and (21) it
follows that

(a)
yY I;Laj)/a fxx( ) (22)

k
UXX(a"y) g XX

or
oa2) > L [—“—(il_;fxx( w/2)1 (23)
and
k(@) %fxx( w2) . (24)

Since k(a) and f,x are bounded and o>y, for y=0 (at which, by (14),

kxx must be calculated) kxx(a) would become unbounded. Similarly, it is
seen that for b1+a, kxy tends to (negative) infinity. Also, since o
(for the terminating crack tip) is greater than 0.5 (at b] for the
embedded crack tip), by following a similar argument it may be shown

that as by+a, k(b]) becomes unbounded.
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Figure 18. Stress intensity factors for a crack in the
matrix {epoxy) and a crack in the inclusion (aluminum)
(m1 =1.6, Ky = 1.8, u2/u1=r23.077; a, = (0.3a, b2= 0.8a,

2¢, =(b1-a]) =a fixed, d= (b1+a])/2 variable).
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Figure 19, Stress intensity factors for a crack going

through the matrix-inclusion in
Ko =1.8, u2/u1 =23.077,
c =(b1-a2)/2, a,
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terface

(K'l
a' =g =-0.5,7%a
=0 fixed, by variable).

B = 0.27326,



Figure 20. Stress intensity factors for a crack
going through the interface (K1= 1.6, k,=1.8,

Wo/uy =23.077,7%a =8 = 0.27326, 2c=(by-a,)=a
fixed, d= (b1+a2)/2 variable).
=35
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The asymptotic trends in Fig. 20 can be explained by observing that
v=0=0.27326 for the crack crossing the boundary (a2<b2=a=a]<b1), 0=0.5
for the crack tip embedded in the matrix, 8=0.33811 for the crack in the
matrix terminating at the boundary (a1=a, d/a=1.5) and «=0.82580 for

the crack in the inclusion terminating at the boundary (b2=a, d/a = 0.5).

Figure 21 shows some sample results for the crack surface displace-
ments of a crack crossing the boundary.

For a crack terminating at the boundary to study the further crack
propagation the details of the angular variation of the stresses,
that is the functions fij{e) in (21) may be needed. Sample results
giving the distribution of these functions are shown in Figures 22-24.
From the definitions (12), (13) and (21) we note that fee(o) = 1. The
functions G1.j shown in Figures 22-24 are obtained from

. Gi5(8)

g;:{r,0) 2 = (i,j=r,8), (-m<o<r). _ (25)
H vZ r

Thus, Gee(o) = k{a) and fij(e) is given by

Gy(0)
fij(e) = EéiTﬁj-, (i,d=r,9) , (-w<g<n) . | (26)

The analytical details of a crack terminating at and crossing the
boundary in a two-phase nonhomogeneous elastic medium may be found in
[14] and [15].

3.2 Anti-Plane Shear Problem for a Crack Interacting with
a Circular Inclusion

The simpler problem for a medium containing a crack and a circular
efastic inclusion or a hole shown in Fig. 4 and subjected to a uniform
anti-plane shear loading '

cyz(x, F o) = Py (27)
can also be treated in a manner similar to the plane strain problem
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Ggg 18)

Fig. 22, Angular variation of Ogg 8round a crack tip touching the
interface,
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Fig. 23. Angular variation of o_g around & crack tip touching the
interface.

G (B)

Fig. 24. Angular variation of Onp 8round a crack tip touching the
interface. :
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discussed in the previous section. In this case the crack surface
tractions for the perﬁprbation problem are obtained by solving the
problem of inclusion or hole without a crack. Some sample results
giving the stress distribution ayz(x,y) (for various fixed values of y)
are shown in Figures 25 and 26, Again note that qualitatively these
results are very similar to the plane strain results shown in figures

2 and 5. For this problem some sample results giving the Mode ITI
stress intensity factors k3 at the crack tips x = + a are defined by

k(a)p0¢5'= k3(a) = 1im v2(x-a) °1yz(x’°) , (28)
X4

k(-a)p va = k,(-a) = 1im v2{x¥3) (x,¢) . (29

)pO 3( omd U]yz )

Figure 27 shows the results for the radial crack in a medium con-
taining an inclusion or a hole. Similar results for an arbitrarily
located crack are shown in Figures 28 and 29. Figure 30 gives some com-
parative results showing the influence of the crack length-to-radius
ratio on the stress intensity factors where m is the modulus ratio
m = “2/”] and k(+a) = k3(¥a)/p6/§1 For m = 1 we have a homogeneous
plane with a crack of length 2a for which k3($a)‘= pofﬁl Consequently

kg(*a) pyva
bR p R

k(+a) = va/R , (30)

giving the straight Tine shown in the figure. For m=0, m=1 and m=23.3
the sTopes of k(+*a) vs. va/R curves as (a/R)~»0 are 1.47, 1 and 0.57,
respectively. The results for m=0 and m>0 are obtained from the solution
of an “infinite" plane with a central crack subjected to the crack sur-
face tractions cyz(x,o) which are equal and opposite to the corresponding
stresses given in figures 25 and 26 at x=b=1.5R.

The singular behavior of the stresses terminating at and crossing
the boundary is discussed in [16] and [17].
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Fig. 25. The shear stress Tyz in a matrix with a
circular hole.
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Fig: 26. The shear stress t,, in a matrix with a
circular inclusion (“2 = 23,3 uq)-

-4]-



PR S
Podlidisd |

Fig., 27. Stress intensity factors for the antiplane
shear problem (k = k3/p01/5, R=a).
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Fig. 28. Stress intensity factors for the
ant1§1ane shear problem (k=k3/p0¢5} R=a, b=
1.5R}.

b/a
Fig. 29. Stress intensity factors for the

antip]aheﬁshear‘proﬁlem'(k=k3/p0¢5} R=a,
c=1.5R). 7 '
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Fig. 30. Stress intensity factors for the
.antip1?ne shear problem (k=k3/pofﬁ} c=0,
b=1.5R).
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4. INTERACTION BETWEEN CRACKS

In this section the problem of interaction between cracks on the
surface and inside a plate with finite thickness is considered.

4.1 Interaction Between Parallel Internal Cracks

The basic geometry of the problem is shown in Fig. 31. In this
section we will consider various special cases relating twc or three
cracks on the surface of a plate under uniform tension.

For two symmetrically Tocated parallel cracks the stress intensity
factors are given in Téb]e 3. Referring to Fig. 31, for this problem
we have a=b (i.e., no crack on x axis) ¢ = H-d, P = 0 (no concentrated
force) 2B is the distance between the cracks, 22 is the crack length and
Iyy = o, for y + ¥=. In this section too the Modes I and II stress
intensity factors k1 and k2 are defined by

k. = lim v¥2r o_ (r,0) , k, = 1im /Zr ¢_ (r,0) , (31)
LAY vy 2 Xy

where r,¢ are the polar coordinates at the crack tip, the crack being
along ¢ = w. Note that as the distance 2B between the cracks decreases
k1 also decreases and k2 becomes more significant. The angle & shown
in this table is an {approximate) direction of a probable crack growth
which is obtained from a simple assumption that along this radial line
at the crack tip the cleavage stress oee(r,e) is maximum [12], where
r<<H-d. Here 9>0 indicates that the cracks would grow away from each
other.

4.2 Interaction Between Parallel Surface Cracks

The stress intensity factors and the angle of probable crack growth
direction in a plate containing two parallel and equal surface cracks
under uniform tension or pure bending are shown in Figures 32-35. 1In this
probliem we have a=b, c=0 and d<H. The figures also show the Mode I
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Figure 31,  The basic crack geometry.
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Table 3.

Stress intensity factors in a strip containing
two symmetric internal cracks, £=(d-¢)/2.

2/H B/ ke/o/Z ke/oy/T 8(°)
0.5 0.7797 -0.1175 16.430
1.0 . 0.8512 -0.0616 8.194
1.5 0.9052 -0.0308 3.887
0.05 2.0 0.9395 -0.0163 1.992
5.0 0.9953 -0.0007 0.157
10.0 1.0053 -0.00001 0.014
20.0 1.0060 0.0000 0.000
0.5 0.7992 -0.1199 ' 16.363
1.0 0.8749 -0.0624 8.076
1.5 0.9310 -0.0307 3.774
0.1 2.0 0.9660 -0.0162 1.920
5.0 1.0219 -0.0001 0.106
10.0 1.0247 -0.00007 0.003
20.0 1.0248 - 0.0000 0.000
0.5 0.8846 -0.2570 15.578
1.0 0.9749 -0.0656 7.634
1.5 1.0437 -0.0330 3.648
0.2 2.0 1.0839 -0.0155 1.641
5.0 1.1096 -0.0001 0.019
10.0 1.1097 0.0000 0.000
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Figure 32.  Stress intensity factors and probable crack propagation
angle in an infinite strip containing two edge cracks under
uniform tension, d=0.2H.
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Figure 33. Same as Figure 2, d=0.5H.
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Figur‘e-' 35. Same as Figure 4, d=0.5H.
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stress intensity factor k1 for a single surface crack for comparison
(the dashed Tine). For the single crack k, is 0. Again note that

k1 is smaller than the corresponding sing]e crack value, k2 becomes more
significant as B decreases, and cracks would tend to propagate away -
from each other. For the bending problem shown in Figures 34 and 35

the normalizing stress o is given by |

%2

a =

m (32) :

where M is the moment for unit thickness.
Figures 36-41 show the results for a plate containing three parallel
surface cracks under uniform tension or bending. In this case, too,
k2<0, meaning that the outside cracks would grow away from the middle
crack. Comparison of the two and three crack results shows that the
introduction of the middle crack "relaxes" the stress intensity factors
in the outer cracks. Fig. 40 shows that for short cracks the interaction
and for Tonger cracks the back surface effect would dominate. Figure
41 shows the results for three point bending. In this problem, too, o

m
is the surface stress in the plate under bending, namely
Gm,"' H = H . (33)

The stress intensity factor k(d) for the outer cracks approaches zero.
as B > 4H (for which the moment is zero).

4.3 Cracks Parallel to the Boundary

The basic geometry for the plate containing a crack parallel to
the boundary is shown by the insert in Fig. 42. The problem considered
in this section also takes into account the material orthotropy. Thus,
the material constants shown in Fig. 42 are related to the elastic
constants of an orthotropic plate as follows:
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Figure 36. Stress intensity factors in an infinite strip containing
three edge cracks under uniform tension, d=b=0.ZH.
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Figure 37. Same as Figure 6, d=b=0.5H.
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Figure 38, Stress intensity factors in an infinite strip containing
three edge cracks under bending, d=b=0.2H, cm=6M/H2.
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Figure 39, Same as Figure 8, d=b=0.5H, o =6M/HZ.
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Figure 40. The effect of the crack depth on the stress intensity
factors in an infinite strip under tension, B=0.2H.
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Figure 41. Stress intensity factors in an infinite strip containing
edge cracks and subjected to three point bending, o =
6M/HZ = 24P/H,
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= 11722
% = Epy/Ey 5 k= %, 22 (34)

The engineering material cohstants which appear in (34) are defined
by the foilowing stress-strain relations

I i
117 E; (0977912099 7v13933) 5 ---
(35)
2¢e =-T—0
128, %12

In Fig. 42 and the subsequent figures the coordinate axes 1 and 2 are
respectively parallel and are perpendicular to the crack. The main
result of Fig. 42 is that as the crack approaches the boundary the stress
intensity factors become unbounded. Also, the analysis of the mixed
mode stress state at the crack tip would indicate that the direction
along which the cleavage stress is maximum is inclined toward the
nearest boundary, meaning that any further propagation of the crack would
be toward the nearest boundary. The corresponding results for a crack
loaded under pure shear are shown in Fig. 43. The peculiarity of these
results is that the Mode II stress intensity factor is relatively insen-
sitive to the location of the crack, in fact it somewhat decreases as
the crack approaches the boundary before becoming unbounded.
Figures 44 and 45 show the effect of the relative crack length for
a symmetrically located crack under Modes I and II loading conditions.
The results for two collinear cracks loaded. under Mode I conditions
are shown in Fig. 46. The figure also shows the stress intensity fac-
tors for an infinite plate (H=~) which are given by

q(0) = p/ER7Z (221 - Efy (36)
(@) = pABAIZ (Zhr) PR - @71/ (37)
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Figure 42. The effect of the crack location on the stress inten-

1.0

sitg factors for uniform surface pressure. H = 0.75a,

§ = 1 = ¢« for the isotropic matefials and ¢ = 1.1175,

k = 1.2895 for the orthotropic material (yellow birch)
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Figure 43. Same as figure 2 for uniform shear applied to the

crack surface.
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Figure 44. Effect of the crack length on the stress intensity
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pressure, « = 1,
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where K(k) and E(k) are complete elliptic integrals of respectively
first and second kind, and the modulus k is defined by

k = /T-a4/b . ' (37)

For convenience a table giving the elliptic integrals (Table 4) is

included in this report where the angle o is related to k by sine=k.
Further results for collinear cracks under Mode II loading condition

are given in Table 5. In these results the half crack Tength (b-a)/2

is used in normalizing stress intensity factor. (a/b)} = 0 and

(a/b) = 1 correspond to the two limiting cases of a single crack of

length 2b and b-a, respectively. As expected k1(a) becomes unbounded

for a-=0 and both k](a) and k1(b) approach the corresponding single

crack value for (a/b)-1 (i.e., for a-»), An interesting result observed

in Fig. 46 and Table 5, however, is that generally for smaller plate

thicknesses as a approaches zero the stress intensity factor k1(a)

goes through a minimum before becoming unbounded. This reduction is

apparently due to the interaction of the stress fields of the two cracks

as the distance 2a decreases. For example, from Fig. 47 it may clearly

be seen that even though the cleavage stress 022(x1,0) perpendicular

to and on the tine of the crack is tensile near the crack and becomes

unbounded at the crack tip, it becomes compressive in a certain interval

away from the crack. This is largely due to the "bending" effect of

the two halves of the plate. Thus after the interaction of stress fields

of the two cracks it is seen that the inner crack tips would be in

compressive region and consequently there would be some decrease in

the stress intensity factor. '

4.4 Collinear Cracks Perpendicular to the Boundary

-From a viewpoint of interaction between two cracks or between
cracks and free boundaries another geometry of great deal of practical
interest is that of collinear cracks perpendicular to thé plate boundary
described in Fig. 48. A special case of this problem is the two surface
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4. Tables of Complete ET1liptic Integrals
K(k) and E(k), k = sing.

V. Vollstindige elliptische Integrale,
V. Complete elliptic integrais,

> | 1,6708 | 1,5708 | 50° | 1,9356 | 1,3055 | 82°0° | 3,3698 | 1,0278 |

o {16709 | 1,5707 | 51° | 1,9539 | 1,2963 | 82°12’| 3,3846 | 1,0267
2 | 1,5713 | 1.5703 | 82° [ 1,9729 | 1,2870 | 82°24’ | 3,4199 | 1.
3° | 1,6719 | 1,697 | 53° | 1,927 | 1.2776 } 82°36° | 3,4460 | 1,0245
4° | 1,5727 | 1,6689 | 54° | 2,0133 | 1,2682 | 82° 48" | 3,4728 | 1,0234
6° | 1,6738 | 1,6678 56° 12,0347 | 1,2587 |'83°0" | 3,5004 | 1,0223
6° | 1.5751 | 16665 | B6° | 20571 | 1.2892 | 83°12’ 3,5288 | 1,0213
7° 11,6767 | 1,5650 | 57 | 2,0804 | 1,2397 | 83°24° 3.5681 | 1,0202
8° | 1,6785 | 15632 68° | 2.1047 § 1,2301 | 83°36" | 3,5884 | 1,0192
8° | 1,6805 | 1,5611 5%° | 2,1300 | 1.2206 | 83°48° | 3,619 | 1,0182

10° | 1.,6828 | 1, 60° | 21565 | 1.2111 | 84°0° | 3,6519 | 1.0172 I

1,5589
11° | 1,6854 | 15564 { 61° | 2,1842 | 1.2015 | 84°12’ | 3,6853 | 1,0163
12° | 1,5882 | 1,5637 | 62° | 2,2132 | 1,1821 | 84°24'| 3,7198 | 1,0153
13 | 1,5813 | 18507 | 63 | 22435 | 1,1826 | 84°36’| 3,7557 | 1.0144
%g: %,gggili %.5476 64° | 2,2754 | 1,1732 | 84°48”| 3,7930 | 1,0135

5442 65° 2,3288 11638 {85°0' | 3,8317 | 1,0127
16° | 1.6020 | 1,5405 | 66° | 2,3439 | 1,1546 {85°12‘| 3.8721 | 1,0118
170 | 1,6061 | 1,537 | 67° | 2,3809 | 1,1454 | 85° 2471 3,9142 1,0110
18° | 1,6105 | 1.5326 | 68° | 2,4198 | 1,1362 | 85°36°i 3,9583 | 1.0102
18° | 1.8151 | 1,5283 | 69° | 2,4610 | 1,1273 | 85°48‘| 4,004 | 10094

20° | 1,6200 { 1,5038 | 70°0" | 2,5046 | 1.1184 | 86°0° | 4,0528 | 1,0087
21° | 1.6252 | 15181 | 70°30° | 2.,5273 | 1.1140 | 86° 12’ 4,1037 | 1,0079
22° | 1,6307 | 1,5142 | 71°0° | 2,5507 | 1,1096 { 86° 24" | 4,1574 | 1.0072
23° 16365 | 1,5090 § 7)° 30" | 2,5749 | 1,1053 86° 36" | 4,2142 | 1,0065
|l 240 | 1.6426 | 1,5037 | 72°0° | 2,5998 | 1,1011 | 86°48" ! 4,2746 | 1,0059
25° | 1,6490 | 1,4981 | 72°30°; 2,6256 | 1,0968 { 87° 0" ! 4,3387 | 1.0053
26° | 1,8857 | 1,4924 | 730" | 2,6521 | 1,0927 | 87°12 | 4.4073 | 1,0047 ]
27" 11,6627 | 1.4864 | 73°30° | 2,6796 ; 1,0885 { 87° 24 | 4,4812 | 1,0041

28° | 16701 | 1,4803 | 74°0° | 2,7081 | 1,0844 | 87°36 | 4.5609 | 1,0036
29° | 16777 | 1.4740 | 74°30° | 2,7375 | 1,0804 | 87°48" | 4,6477 | 1.0031

30° | 1,6858 | 1,675 | 75°0° | 2,7681 | 1,0764 | 88°Q" | 4.7427 | 1,0026
31° 11,6941 | 1,4508 | 75°30° | 2,7998 | 1,0725 j 88°12" | 4,8473 | 1.0022
32° 11,7028 | 14539 | 76°0° | 2,8327 | 1,0686 | 88°24° | 4,9654 } 1,0017
33° 11,7119 | 1.,4469 | 76°30°] 2,8669 | 1,0648 { B8° 36" | 5,0988 %,gg%g
1.0008
1,0006

LT 1,7214 | 1,4397 | 770" | 2,9026 | 1,0611 | 88° 48" 5,2527
35° 1,7313 | 1,4323 | 77° 30" 2,9397 | 1,0574 | 89°0" | 5,4349
36° 1,7415 | 1,4248 | 78°0° | 2,9786 | 1.8538 | 89°6 | 5,5402
3 1,7522 | 1.4171 | 78°30°| 3,0192 | 1,0502 | 89° 12" | 5,6579 | 1,0005 L
38° 1,7633 | 1.4092 | 79°0° | 3,0617 | 1,0468 | 89°18'| 5,7914 | 1,0005 |

L3 1,7748 | 1,4013 | 79°30° | 3,006¢4 | 1,0434 | 89°24’ | 5,9455 | 1,0003
: .
: 40" | 1,7868 | 1,3931 | 80°0° | 3,1534 | 1,0401 | 89°30° | 6,1278 ! 1,0002
. 41° 11,7992 | 1,3849 | 80°12"| 3,1729 { 1,0388 | 89°36" | 6,3508 | 1,0001
;7427 ¢ 1,8122 | 1,3765 | 80°24° | 3,1928 | 1,0375 | 89°42° | 6,6385 | 1,0001
X 1,8256 | 1,3680 | 80° 36 | 3,2132 | 1.0363 | 89° 48 | 7,0440 | 1.0000
. 440 1.8396 | 1,3594 .| 80° 48" | 3,2340 | 1,0350 | 89°54°! 7,7371 | 1,0000
45° 1,8541 | 1,3506 | 81°0" | 3,2553 | 1,0338 | 90° o0 1,0000

;| 46° 18692 | 1,3418 §81°12° | 3,2771 | 1,0326
Yt 1.8848 | 1,3329 | 81°24°| 3,2995 | 1,0313
i 48° 1.9011 | 1,3238 | 81°36° | 3.3223 | 1.0302

49° | 1,9180 | 1,3147 | 81°48'| 3.3458 | 1,0290

Jahnke & Emde, "Tables of Functions"
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Table 5.

Sed
U B

Stress intensity factors in an orthotropic
strip containing two identical collinear cracks
loaded by uniform crack surface pressure p
or shear q; Hy=Hg=H, «=1, Hs/(b-a)/2 = 0.4,

090 (X150)=-D a12(X750)=-q

2 |k K, (a) y(b) ky(a)
U aEn% | aim | obh a2y %
0 9.376 o 2.629 o
.Ol 3.693 6.996 2.106 5.837
g 3.788 2.837 1.952 2.300
.2 3.962 3.113 1.935 1.989
.3 4.074 3.642 1.933 1.939
N 4,124 3.971 1.933 1.933
.5 4,138 4.103 1.933 1.932
.6 4.1417 4,138 1.933 1.933
.7 4,140 4,143 1.933 1.933
.8 4,140 4.142 1.933 1.933
.9 4,139 4.140 1.933 1.933
1 4.139 4.140 1.933 1.933
2 4,142 4,142 1.933 1.933
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cracks simulating weld defects on both surfaces.

Some samplie results for the stress intensity factors k{a) and
k(b) for two symmetrically Tocated collinear cracks are given in
Table 6. Fig. 49 shows the results for two (collinear) surface cracks.
For very shallow surface cracks (i.e., for a~h), as seen from the
figure k(a) approaches the stress intensity factor in a semi-infinite
plane containing an edge cratk of depth Zao, namely

k1(a) + 1.586 0013;' . (38)
In the other Timiting case for which a+0, k(a) approaches the stress

intensity factor in a symmetrically loaded infinite plane containing

Table 6. Stress intensity factors for collinear internal
cracks in a strip (Figure 1, a, = (b-a)/2).

ash | b/n | K(a)l | _k(b)
95v30 9573,
0 0.4 (+ =) 1.5690
0.1 ] 0.5 1.1746 | 1.1169
0.2 | 0.6 1.1102 | 1.0967
0.4 | 0.8 1.0984 | 1.1250
0.5 | 0.9 1.1290 | 1.2278
0.6 | 1.0 1.6080 | (+ =)
0 0.8 (+ =) 2.5680
0.1 | 0.9 1.6730 | 1.7451
0.2 | 1.0 2.1769 | (+ =)
0.5 | 0.95 | 1.1960 | 1.4711
0.5 | 0.98 | 1.2713 | 1.9008
0.5 | 1.0 1.6228 | (+ =)
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kl (b)/p J(b-a)/2
ki/(a)/ps/{b-a)/2

SH/(b-a)/2=04

f"z

* 2b ‘ o H %
ky(a)/p/(b-a)/2
H=®
‘\\\_.
k; (b)/pv/(b-a)/2
| | i | f L ]
0.1 0.2 0.3 0.4

a’/b

Figure 46. Stress intensity factors for two collinear cracks in an

orthotropic strip.
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Xy/a

Figure 47. The effect of material orthotropy on the normal stress
czz(x1,0) in a strip containing a pressurized crack (s=
=1 isotropic strip).
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two edge cracks. In this case, if the resultant force perpendicular
to the cracks is P, and the Tength of the net ligqment is 2a, it can be
shown that the stress state in the net ligament is given by

5y (x:0) = - _, 0y (X:0) = 0 . -~ (39)

mYac-

Thus, by observing that

P = 2hc0 = 2a0*-I (40)
and
k{a) = 11m v2(a=X) (x 0) , (41)
we obtain
k(@) =2 o, /3 (42)
T 1 y

These two 1imiting results are also shown in Fig. 49.

5. INTERACTION BETWEEN FLAT INCLUSIONS AND CRACKS

Few unusual results aside, the prob]em of interaction between two
cracks is relatively well-understood in the sense that the resulting
stress field or the stress intensity factors would either be amplified
or reduced as the distance between the cracks decreases. Almost in all
cases the qualitative nature of the result could be predicted intuitively.
For example, if the cracks are parallel then they would be in each
other's shadow and there would be a reduction in the stress intensity
factors. On the other hand if the cracks are co-planar then one would
expect an amplification in the stress intensity factors, The exception
or the unusual resu?tuin this case is the reduction in the stress
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Figure 48. Infinite strip with two internal cracks.
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Figure 49. The stress intensity factor for the edge cracks in an
infinite St!"ip (01 = Uoh/a )o

-72-



intensity factors at the inner crack tips for certain relative crack
locations in plates with relatively smaller thicknesses. Some specific
problems relating to interaction between cracks were discussed in the
previous sections. '
Intuitively what is not as well understood is the problem of inter-
action between cracks and flat inclusions. Separately both flaws have
singular stresses and consequently are locations for potential fracture
initiation. However, the inclusions are also "stiffeners" and thereforé,
properly oriented, they should tend to arrest crack propagation. For
this reason in this study it is found to be worthwhile to undertake a
detailed investigation of the problem on which the technical Titerature
seems to be extremely weak, Particularly interesting in this problem
is the behavior of the stress state around the ends of the inclusions
and at the points of intersection between inclusions and cracks. The
details of the analysis of this crack-inclusion interaction problem and
very detailed results are given in Appendix A of this report.

6. PLANAR CRACKS OF FINITE SIZE

Referring to Fig. 50 which is reproduced from API Standard 1104
and which describes a set of empirical rules regarding the interaction
between planar cracks it may be seen that somewhat more guantitative
results are needed. The general method to provide such results is
described in Appendix B of this report. The appendix gives the results
only for a single internal crack. However, the method is general and
will be used for the interaction of coplanar surface cracks, and
coplanar internal cracks located paraliel or in series,
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INTERACTION IFINTERACTION EXISTS

EXISTSIF: EFFECTIVE FLAW SIZE 1S:
s< gy + oy
CASE 3 2c, = 20y +s5+ 2c,
S1<C1 +C2 239=231+32+232
and
CASE 2 —
Sa<ag *ta, 20, = 2¢y +5; + 2¢,
59 <cp +cy 3g =234 +5, +a,
and
CASE 3 -
32 -
52<a1+—2' 2CE_2C1+S1+2C2
a,=d+2a
d<a
2e, = 2¢
9 <cp +Cy 2a, = 2a4
and
s3<a1 +82 2Ce=2C1 +S1+202

Fig. 50. RULESFOREVALUATION OF FLAW INTERACTION
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PART II
MECHANISMS OF CORROSION FATIGUE IN PIPELINE STEELS

In this part, the initial results of studies, designed for develop-
ing mechanistic understanding of corrosion fatigue, are described. These
studies provide the scientific bases for guiding the development of
methodology for assessing safety and durability of pipelines in service,
and for guiding the development of improved materials and protection
systems. The results are not intended for use directly in design and
rule-making.

1. INTRODUCTION

Trénsmission and distribution pipelines are exposed to a broad
range of chemical environments, both in terms of corrosive species that
are present in soils {such as carbonates, chiorides and nitrates) and
of deleterious species that may be transported within the lines (such
as hydrogen and ammonia, and hydrogen sulfide and water/water vapor as
impurities in natural gas and 0i1)}. These environments, acting in con-
cert with operating stresses (both static and cyclic stresses) and
residual stresses, can cause cracks to initiate and grow, and result in
subsequent failure (leakage or rupture). In addition to these external
environments, hydrogen that might be present in the steel (introduced
during fabrication, processing or field installation, or by corrosion
or cathodic charging during service} can also lead to cracking. Quanti-
tative information and understanding are needed, therefore, to assess
the safety and reliability of pipelines during service, and to guide in
the development of improved materials and protection systems.

Although a considerable amount of research has been devoted to the
problems of environmentally assisted cracking in pipeline steels, most
of this effort, however, has been directed to the study of stress cor-
rosion cracking (or cracking under static Joading) and of corrosion per se.
For a range of reasons, quantitative understanding of the phenomenological
and mechanistic aspects of environmentally assisted cracking is yet to be
fully developed. Research during recent years, at Lehigh'University and
elsewhere, has shown that environmentally assisted cracking results from
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the interaction of clean metal surfaces  (produced by cracking or by de-
formation) with the environment, and that the very early stages (i.e., the
first few milliseconds to few seconds) of reactions are responsible for
the enhanced cracking. Fatigue (associated with cyclic loading from a
variety of sources), being a proficient mechanical process for creating
new surfaces, acting in concert with corrosion, therefore, may be a more
serious failure mechanism than stress corrosion cracking.

The need to consider corrosion fatigue as a potentially significant
failure mechanism in pipelines is based on the recognition that the
operating pressure (or stresses) do not remain truly constant and minor
fluctuations in stresses can significantly alter cracking response [1-4].
Indeed, it has been difficult to reconcile service failures and labora-
tory stress corrosion cracking data without allowing for the possibility
for corrosion fatigue [4,5]. To properly address the problems of corrosion
fatigue, it is essential to recognize the multi-faceted nature of the
phenomenon which reflects the synergism of chemistry/electrochemistry,
mechanics and metallurgy. The cracking response reflects both the nature
and the kinetics of chemical reactions between the environment and the
fresh crack surfaces, and the interactions of hydrogen that is produced
by these reactions with the microstructure [6]. Significant advances in
understanding and in placing corrosion fatigue analysis on a fundamentally
sound and quantitative basis depends on the understanding of the mechanisms
for and various processes that control corrosion fatigue.

2. PROGRAM OBJECTIVE AND SCOPE

In this part of the program, a mutti-disciplinary research is being
undertaken to investigate the mechanisms of corrosion fatigue crack
initiation and propagation in pipeline steels exposed to aqueous environ-
ments. TheAprogram s directed at (1} the development of quantitative
understanding of the early stage of chemical reactions in relation to the
crack initiation and propagation, {2) elucidating the mechanisms for
corrosion fatigue crack initiation and propagation, including the
influences of chemical, mechanical and metallurgical variables, and
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(3) the formulation and evaluation of models for predicting cracking
response and service performance. A combined fracture mechanics, sur-
face chemistry and material science approach is used.

The specific areas of research are as follows:

(1) Determination of the kinetics of passivation (viz., initial
reactions) as functions of temperature, pH, ion concentration, and other
factors.

(2} Determination of the kinetics of fatigue crack initiation as a
function of temperature for selected environmental conditions, and cor-
relation with the chemical data.

{3) Determination of the kinetics of fatigue crack propagation as
a2 function of temperature for selected environmental conditions, and
correlation with the chemical data. . ;

(4) Examination of the influences of Toading variables {such as
cyclic load frequency, waveform, and Toad ratio) on corrosion fatigue
crack initiation and propagation. ' |

(5) Synthesis of chemical, mechanical and metallurgical data to
develop quantitative understanding of the mechanisms for corrosion fatigue
crack initiation and propagation. Formulation and verification of models
for predicting cracking response and service performance.

The research program is planned for a period of three (3) years, and
complements an ongoing study on the mechanisms for corrosion fatigue in
high-strength steels and titanium alloys sponsored by the Office of Naval
Research. Principal efforts dUring the first year are being directed to-
wards the measurements of the kinetics of passivation and of the kinetics
of fatigue crack growth in one electrolyte over a range of temperatures
from 10°C to 90°C. Cyclic load frequencies from 1072 o 10 Hz. will be
used for the fatigue crack growth experiments. X-70 steel (in plate
form) and IN Na2C03 - IN NaHCO3 solution are used in these initial studies.
Other environments will be considered for later studies,

3. PROGRESS TO DATE

Because of the relatively late starting date of this program with
respect to Lehigh's academic calendar, a suitable graduate student was
assigned at the beginning of the spring semester (that is, in January,
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1983). Principal effort has been directed towards the exploration and
development of electrochemical measurement techniques for determining the
kinetics of passivation or surface reaction of clean surfaces. Studies
of the kinetics of corrosion fatigue crack growth in the X-70 steel have
been initiated also. The results are sunmarized briefly here.

3.1 Electrochemical Measurement Techniques

Two e]ectrochemica]'measurement techniques are being considered.
The first one (the potential step technique)} involves cathodically
polarizing a "clean" surface at a suitable potential in the electrolyte
of interest, suddenly switching to another potential, and monitoring the
current transient under potentiostatic conditions at the new potential.
The second technique, proposed by Gunchoo Shim as a part of an ONR
sponsored program, measures the galvanic current between a cathodically
"cleaned" surface and a surface that has been "oxidized" in the electrolyte.
The current fiow in each of these cases is expected to contain information
on the reactions of a clean surface with the electrolyte. |

Since the second technique more closely simulates the reactions at
the crack tip, under open circuit conditions, further evaluation of this
technique is being made (in part by Professor Wei in conjunction with
his sabbatical leave at EXXON Corporate Research Laboratories during the
1982-83 academic year). The essential elements of this technique are
illustrated in Fig. 1. Figure la illustrates the cleaning arrangement,
and Fig. b, the measurement configuration. Evaluation of the technique
was carried out using a borate solution, containing an equivolume mixture
of 0.15N Na28407-10H20 and 0.15N H3BO3 solutions, with pH = 8.8 at room
temperature.

An idealized galvanic current transient is illustrated in Fig. 2.
The initial rapid decay represents dissipation of charges in the Helmholtz
(or double) layer formed during cathodic cleaning. The slower decay
represents charge transfer associated with the surface reactions. A
simple, linear relationship in log (current)} versus time coordinates
would suggest a simple first order reaction of the Langmuir‘type. A
typical current transient for iron in a deaerated buffered borate
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sotution (pH = 8.8) at room temperature is shown in Fig. 3. With
increases in test temperature, the current decay becomes more rapid and
is consistent with the expected increase in the rates of reactions.

It is clear, however, that the processes are much more complex.

To better understand the processes that might contribute to the
galvanic current transient, experiments were carried out using only
graphite electrodes. In a well-deaerated sotution, the current decays
rapidly, Fig. 4. This rapid decay is consistent with the expected rapid
initial dissipation of the double Tayer. With the'presencerof'dissoived
oxygen, dissipation of the double layer is followed by a much sTower
current decay, Fig. 5. This slower decay is believed to result from the
reduction of oxygen in solution. Other pkocesses, such as the oxidation
of iron from Fe2+ to Fe3+, are also expected to contribute to the current
flow.

Nevertheless, the. results are very encouraging. Additional experi-
ments using gold electrodes in 3% NaCl solution have been carried out
to attempt to identify the various reactions. Analysis of these data
are in progress. Measurements of the reactions of X-70 steel with
N Na2C03 - TN NaHCO3 solution will be made to correlate the kinetics
of these reactions to corrosion fatigue crack growth response.

3.2 Fatigue Crack Growth

Fatigue crack growth experiments have been carried out on X-70
steel in distilled water, under constant-K conditions at four temperatures
from about 20°C to 90°C (Fig. 6). The results clearly show the influence
of test frequency andxtempérature on the rate of corrosion fatigue
crack growth. The observed response is similar to that of HY130 steel
in distilled water [6]. A stronger temperature dependence for the
mechanical component of fatigue crack growth, however, is suggested by
these data. Room temperature fatique crack growth data, obtained in
IN Na2003 - 1N NaHCO3 solution, are shown in Fig. 7. The result indicates
no effect of frequency over the range 0.03 to 10 Hz in this environment,
Additional'tests at higher temperatures are in progress, The results
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will be correlated with the planned electrochemical measurements to
develop an understanding of corrosion fatigue crack growth response in
this steel.

4. PLANNED RESEARCH

Further development and evaluation of the electrochemical measurement
techniques and measurements of the kinetics of reactions of X70 steel
with TN Na2003 - 1IN NaHCO3 and 3.5% NaCl solutions will be made during
the coming year. Corrosion fatigue crack growth experiments will be
continued to assess the influences of frequency and temperature in the
same solutions.

w32~



okt

REFERENCES FOR PART II

R.R. Fessler and T.J. Barlo, "The Effect of Cyclic Loading on the
Threshold Stress for Stress Corrosion Cracking in Mild and HSLA
Steels", presented at the ASME Third National Congress on Pressure
Vessel and Piping Technology, San Francisco, 1979.

. 0. Vostkovsky and R.J. Cooke, Int. J. Pres. Ves. & Piping, Vol. 6,

1978, pp. 113-129.

R.N. Parkins and B.S. Greenwell, Aug./Sept. Metal Science, 1977,
pp. 405-413.

"Environmentally Induced Cracking of Natural Gas and Liquid Pipe-
Tines", Vols. 1 & 2, Final Report, Contract #DOT-0S-60519, ASL
Engineering, Inc., 495 South Fairview Ave., Goleta, CA 33017,
Dec. 1977.

"Proceedings - 5th Symposium on Line Pipe Research", American
Gas Association, Cat. No. L30174, 1974.

R.P. Wei and Gunchoo Shim, "Fracture Mechanics and Corresion Fatigue",
in Corrosion Fatique, ASTM STP 801, T.W. Crooker and B.N. Leis,eds.,
American Society for Testing and Materials, Philadelphia, Pa, 1983,
pp. 5-25.

-83-



CLEAN

i .
—— Electrolyte
= P e
"oxide" | T C.E
Specimen
(a)
MEASURE
i@
/P\
—= Electrolyte
//
Hoxide" T C.E
Specimen
(b)
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APPENDIX A

THE CRACK-INCLUSION INTERACTION PROBLEM

1. Introduction

In studying the fracture of multi-phase materials, structures composed
of bonded dissimilar solids, and welded joints it is necessary to take into
account the effect of the imperfections in the medium. Generally such imper-
fections are in the form of either geometric discontinuities or material
inhomogeneities. For example, in welded joints various shapes of voids,
cracks, notches and regions of lack of fusion may be mentioned as examples
for the former and variety of inclusions for the latter. From the viewpoint
of fracture mechanics two important classes of imperfections are the planar
flaws which may be idealized as cracks and relatively thin inhomogeneities
which may be idealized as flat inclusions with “sharp” boundaries. In both
cases the edges'of the defects are Tines of stress singularity and, conse-
quently, regions of potential crack initiation and propagation.

The technical Titerature on cracks, voids and inclusions which exist
in the material separately is quite extensive. However, the problems con-
cerning the interaction of cracks, voids and inclusions do not seem to be
as widely studied (see, for example, [1] for the results of crack-circular
inclusion or void interaction problem and for some references). In this
paper the relatively simple problem of an elastic plane containing a crack
and an arbitrarily oriented flat elastic inclusion is considered. Of special
interest is the examination of the asymptotic stress field in the neighborhood
of inclusion ends and the problems of intersecting cracks and inclusions.

The basic dislocation and concentrated force solutions are used to formulate
the problem [2]. Hence, the formulation can easily be extended to study prob-
lems involving multiple cracks and inclusions.

2. Integral Equations of the Problem

The geometry of the crack-inclusion interaction problem under considera-
tion is shown in Figure 1. It is assumed that the medium is under a state of
plane strain or generalized plane stress and the in~plane dimensions of the
medium are large compared to the Tengths of and the distance between the
crack and the inclusion so that the effect of the remote boundaries on the
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- perturbed stress state may be neglected. Thus, the Green's functions for
the concentrated forces and dislocations in an infinite plane may be used to
formulate the problem. It is further assumed that the inclusion is suffi-
ciently “thin" so that its bending stiffness may also be neglected. _

Referring to Figure 1 we consider the stresses and displacements due to
a pair of edge dislocations on the x axis, a pair of concentrated forces on
the Tine e=constant and the applied loads acting on the medium away from the
crack-inclusion region. Let the subscripts d, p and a designate these three
stress and deformation states, i.e., let 94i5* Opij and Oaij* (1,3) = (x,y)
or (i,j) = (r,e), be the stress components due to dislocations, concentrated
forces, and applied loads, respectively. The total stress state in the elas-
 tic plane may, therefore, be expressed as

035 (%¥) = 04506¥) + oY) + o5 00y)s (123 = xy) (1)

Let us now assume that the dislocations are distributed along a<x<b,
y=0 forming a crack. If g{x) and h(x) refer to the dislocation densities
~defined by

é%'[”y(x’+°) - U (x,-0)1 = g(x) ,a<x<b ,
(2a,b)

g%—fux(x,+0) - “x(x"o)] =h(x) , a<x<b ,

the corresponding stress components at a point (x,y) in the plane may be
expressed as

g xe) = [ [ (X, )0t} + B Gy, tIn()Tdt
a

oayylo¥) = | [, (xast)gle) + H (oo 0n()Jet (3a-c)

5
oy (xe¥) = [ T8
a

wy{0Yst)alt) + H o (xy,thh(t)]de ,

where



[T .

6 =2 . it-legt-xzz - y2]
XX w(eti) t-x)Z2 + y ’
Sy ~ FT%%TT ' tf%t-i;; ; y§}§ -+,
Hoy = ;T%ETT . %!%fx+ Bit;xazl" (42-F)
fyy =TT {C=iaarsial
ey = TR EE§~X§E-1 ;232 =

In (4) u and « are the elastic constants of the medium, u the shear modulus,
« = 3-4y for plane strain and « = (3-v)/(1+v) for plane stress v being the
Poisson's ratio. '

Similarly, from the concentrated force solution as given, for example,
in [2] the stress components %nij = Sij due to a pair of forces Px and P
acting at the point (xo, yo) may be written as

(A,+A, )Py + (B,+B,)P
Sxx{X2¥2%g2¥g) = 21r(]n<+1) 1[(><:E><o))(2 * (;—yi)zj]lz ’

(A;-A,)R+ (B,-B,)P
= 1 1°2 1.2
Syy(0s¥>%05Yo) =TT Teng 2 ¥ 7y 2P (8a-c)

y

1 APy + BoP,

Sy (%s¥%05¥o) = 5r o [(x=x T2+ {y-y J?T* °

7 = ~2{x=x ) [{x-x)2 + (y-y,)?]

Ay = ~e(x=x ) [{x=x)2 + (y=y,)2] = (x-x)E(x-%))% = (y-y )2 + 2(y-y,)2(x=x,)
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By = -2(y-y ) [(x-x,)2 + (y-y,)?2]

By = +e(y=yo) Lxmx)2+ (y-y,)20-(y-yo ) L(x-%)) 2 (y=y,)21-2(x-x )} 2(y-y, )

I
I

3 = =y ) Lxexg Y2+ (y=y )2 1= (y -y ) Tx-x ) 2= (y-y ) 21-2(x-x,) 2 (y-y,,)

By = —ix=x) ) [(x=x) ) 24(y=y ) 2T+{x=x ) [(%=x, ) 2-{y=y, ) 2J-2(y-y ) 2(x-x,)

(6a~f)

If the inclusion is located along the line ¢ < r < d, 6 = constant, and

if its bending stiffness is neglected, then the following conditions are
valid:

u.(r.e+0) = u.(r,e-0), u,(r,6+0} = ug(r,e-0) ,
*Pe(r,a) = cae(r,a+0) - cee(r,e-o) =0, (7a~-d)

Pr(rs8) = -p(r) = o, (r,640) - o, (r.8-0) , (cer<d). :

re

Thus, to formulate the problem it is sufficient to consider only the radial
component Pr=p of the concentrated force. For Pe=0 and Pr=p observing that

P, = P cosg ,'Py = p sing , | (8a,b)
and substituting Xq = 0S8, ¥, = rosine, by using the kernels Sij given
by (5) the stress components o_.. are found to be

p1J

‘ 1 Jd (A1'+A2')cose+(B1'+Bz')sine

prx(x’y) = Ta(et]) [(x-rocose)2+(y—ros1‘ne)2]2 p(ro)dro i
c

1 ‘ (A]"Az')0056+(31'-32’)sine
dpyy(X’Y) - 2m{k+1) f [(x-rocose)2+(_y_ros-ine)2]2 p(ro)dro » {9a-c)

c

I d Ay'cose + B,'sing

pry(x’y) T Zu(HT) J. [(x-r coso)Z+{y-r_sine)Z]? plryldry
c
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where the functions Ail’ Bi', (i=1,2,3) are obtained from {6) by substituting
X, = 1,C0S8 and Yo © ros1ne, e.9.,

A1'(x,y,ro) = —2(x-r0cose)[(x—r0cose)2 + (y—rosine)2] . (10}
Since the stresses %213 due to the applied loads are known, from (1),
(3) and (9) it is seen that once the functions g(x), h(x) and p{r) are deter-
mined the problem is solved. These unknown functions may be determined by
expressing the stress boundary conditions onr the crack surfaces and the
displacement compatibility condition along the inclusion, namely

= +
cyy(x,O) (x,0) cpyy(x,o) + cayy(x,o) 0, (a<x<b),

Tdyy

oxy(x,O) cdxy(x,o) + opxy(x,o) + caxy(x,o) 0, (a<x<b), (11a-c)

n

err(r,e) = edrr(r,e) + aprr(r,e) + earr(r,e) Ei(r)’ {cer<d)

where ai(r) is the (longitudinal) strain in the inclusjon. If, for example,
i3
(1,3) = (x,y), then the applied quantities in (11) may be expressed as

the stress state away from the crack inclusion region is given by o

gayy(X,O) = Iy 2 caxy(x,ﬂ) = Iy ?
aarr(r,e) = %%? [c:x {cos?g - %ﬁﬁ-sinze)
w ' 3"'{(' 2 4 < ) y
+ cyy(s1n 8 ~ T3, COS 8) + Tre Oxy sin2e] . {(12a-c)

We now note that if p(r) is the body force acting on the elastic medium
then -p(r) would be the force acting on the inclusion distributed along its
length. Thus, the strain in the inclusion may be obtained as '

o+
1 Kg

SICREE s Lp(%)dr" (13)
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where g and kg are the elastic constants, and AS is the cross-sectional
area of the inclusion corresponding to unit thickness of the medium in z-
direction. From the expression of Epp given by the Hooke's law

frr = By Crr T The Toe) (14)

d
p(ry)
ore(148) = 2T | T Oy - (15)

Similarly, from {3), (4) and (14) we find

b
lg.ﬂ_[ [6_(r,t)g(t) + H_(r,t)h(t)Idt (16)

a

e gper(rs8) =

where
G (r,t) = }77377-~q-{cos o- ?+ sin2e)(t-r cose) x
~ x[(t-rcose)2-r2sin2p] + (sin2e- %ﬁf-tbsze) X
x(t-rcose)[3risin2s + (t-rcose)?]
+ T%E sin26 r sina[r2sin2e-(t-rcose)?]} , | (17}
2u

- 1 2 2 2ein2
HE(r,t) = T RE {({cos2p- 1+ sin?s)r sine[r?sin?s

+ 3(t-rcose)2] + (sin2e- ? cos%9)r sing x

e
x[r?sinZg-{t-r2cos2g)2] + T%Z sin2e x
x(t-rcoso}[(t-rcoss}? - r2sin2g] , (18)
= (t-r cose)? + r2sin2s . : (19)



Finally, by substituting fram (3), (4), (9), (12}, (13), (15) and
(16) into (11), the integral equations of the problem may be obtained as

follows:
b d (A, "-A,")coso+(B,'-B,"' )sine
1{ g(t)dt, 1 1772 1 72 (r )dr = - Dhc =
m t-x 41:1.1 [(x-rocose)2+(ros1’ne)2]2 Pirydry 2¢ Oyy ?
a ¢ ~
(a<x<b) ,
b
1( h(t)dt , 1 (A cose+B3 s1ne)p(r) dr _ It e
™ t-x | T [(x-r cos8)2+(r, s1ne)2]2 Zu Oxy °’
a c
(a<x<b) ,
b
cy <, b 1 d p(r,)
?¢%HMMWR%?JQMMMW+FJ%¢d%
a a c
YCO ‘ CO 2 3 2
+ —ﬁ—f H(r‘o-r)p(ro)dro = - {{cos2e- —ﬁ_—— sinZe)g. Sy
¢
+ (sinZe- %—-—COSZB)G 1i-cr°° sin2e], {c<r<d) , (20a-c)
where ( |
T+k
o m(1+¢)2 _ " s
o T s Y W . (21a,b)
From the definition of g and h given by (2) it follows that
<f g(t)dt =0 , J h(t)dt = 0 . (22a,b)
a a '
Also, the static equilibrium of the inclusion requires that
d
f p(r)dr = 0 . (23)
¢



Thus, the system of singular integral equations must be solved under the
conditions (22) and (23). From the function-theoretic examination of the
integral equations (20) it can be shown that the unknown functions g, h and
p are of the following form [2]:

Fy(t) R Falr)

1 ah(t)' 1 1 5 - 1 ¥
(b-t)E(toa)? i) o (der)F(ro)

g(t) =

(24a-c)

where F], F2 and F3 are bounded functions, The solution of (20) subject to
(22) and (23) may easily be obtained by using the numerical method described
in [3]. '

3. Stress Singularities

After solving (20) the Modes I and II stress intensity factors k1 and
k2 at the crack tips x=a and x=b, y=0 which are defined by

k](a) = 1im vZ2(a-x) Iy (x,O) . k1(b) = 1im v2(x-b) oy (x Q) ,
X4 x-b
k2(a) = 1im v2{a-x) oy (x,0) , kz(b) = Tim vZ{x-b)} o, (x,0) ,
X-+a Y X->b Y
(25a-d)
may be obtained as follows:
kT(a) = %%L-11m v2(x-a) g{x) , k](b) = - T+ 11m v2(b-x) g(x) ,
ky(a) = ]+ 11m vZ2(x-a) h(x) , ky(b) = - TJL ]1m VZZB-XS h(x) .
(26a-d)

The constants k1 and.kz are related to the asymptotic stress fields near
the crack tips through the well-known expressions (see, for example, [4]
and [5]). However, not so well-known is the asymptotic behavior of the
stress fields near the inclusions having sharp edges. From (24c) and (7d)
it is seen that the shear stress Gra'has a square-rgot singularity at the

-8~
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tip of the inclusion. However, if one is interested in crack initiation
around such singular points, one needs to know the direction and the magni-
tude of the maximum local cleavage stress. This, in turn, requires the
investigation of the complete asymptotic stress field near the singular
points. By using the basic form of the solution of the related density
functions given by (24) and going back to the original stress expressions,
the asymptotic stress fields may be developed by following the general
techniques described in, for example, [6] or [7].

In an elastic medium containing an elastic line inclusion under plane
strain or generalized plane stress conditions, the asymptotic analysis gives
the near tip stress field as follows [7]( ),

~ ]
g, (r.,8) = —cos 5,
Yy /o 2

k

~ 3+l<' ] 9

cxx(r,e) = - cos 7
(r,0) & - X1 k‘ sin & (27a-c)

?xy ? K-T or 2

where X,y and r,e are the standard rectangular and polar coordinates, the
origin of coordinate axes is at the inclusion tip and the inclusion lies
along the negative x axis or along 6=r, r>0. Equations (27) suggest that
similar to crack problems one may define a {Mode I) "stress intensity factor®
in terms of the (tensile) cleavage stress as follows:

k, = tim v2r o (r,0) . (28)
1 r-0 Yy |

From (7) by observing that (at the right end of the inclusion)

(P +W) - 0 (rs'W) = -D(P) ) ' (29)

(* ) Note the misprints in (4.6) of [7].



in terms of the function p(x) k1 may be expressed as

= -1im Ll e o
ky = -lim 5 o v2r p(r) . (30)

1 r-0
It should be noted that in the case of flexible elastic line inclusions
there is no antisymmetric singular stress field. For example, in a plane
under pure shear (c:y) parallel to the inclusion, the perturbed stress field
is zero. Physically this of course follows from the fact that the normal
strain (axx) parallel to the plane of shear is zero,

Similarly, for a rigid line inclusion (i.e., for an inclusion having
infinite bending as well as tensile stiffness) it can be shown that for
small values of r the asymptotic stress field is given by

~ 1 8 . xtl
z . +
cyy(r,e) - (k1 cos 5 + = ky sin 2) .
2 1, 3% 8 . 3« .8 i
cxx(r,e) 2 - (- oo k1 cos ¥+ 3 ko sin 2) . (31a-c)
. ~ K'+‘i __e_

Again, the stress intensity factors k1 and k2 are defined in terms of the
tensile and shear cleavage stresses at 6=0 plane as follows:

ky = Tim v2r 5_ (r,0) , k
! r-0 ‘A

= Tim ¥2r o (r,O) . (32a,b)

2 -0

As in the crack problems, the antiplane shear component of the asymp-
totic stress field around flat elastic and rigid inclusions is uncoupled.
Defining a Mode III stress intensity factor by

kg = 1im ¥2ZF o (r,0) , (33)
r-0

the asymptotic stress field may be expressed as

-10-
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k

~ 3 8
o,.(rse) = ——cos <,
X2 — 2
2r (34a,b)
k
_ 2 3 . 8
oyz(r,e) - sin =,

where again the inclusion lies along e=x pTane(*).

4. Crack-Inclusion Intersection

Analytically as well as from a practical viewpoint intersection of
cracks and inclusions presents some interesting problems. In these problems
the point of intersection is a point of irregular singularity with a power
other than 1/2. Even though'the general intersection prob]ems for an arbi-
trary value of o may be treated in a relatively straightforward manner, in
this paper only some special cases will be considered.

4.1 The case of 5 = %-, a=20,¢c=0

In this case the system of singular integral equations (20) becomes

| 2
1 g( ) 1 ¢4 C,htx
; J t'}; dt + ‘1‘T"' f [X2+t2 - (x§+t2)2]p(t)dt 'F-! (X) N (0<x<b) .
0 0

d 3
X
%‘f “i‘l'dt t I [(;zxfzyz- §2$-zﬂp(t)dt = fo(x) , (Owx<b) ,

0

( )Note that in this case if the remote stress is decomposed into oxz and

yz’ the perturbed stress field due to dyz would be zero, For the cleavage

plane o the shear cleavage stress may be written as ceo(r,e)=c sing- ~0,,,€080=
-(k3//2r)sin(9/2), 6, = 9+n/2, indicating that e=%r/2 is the maximum cleavage

planes.

-11-
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1 b c3t c4tr2 1 car c4r£2
§ff Lz * (Tzarzyzio(t)dt + E’I [ezir - (errryzin(tde
0 o
d c d
+ %f Rﬁ_lt_tr dt + TSJ H(t-r)p(t)dt = f3(r) , (O<r<d), (35a-c)
0 0
where
= 3t =1 = ulx-1)
i T B R <’
(36)
e =du  p{I*e)}(Theq)u
4 k * 5 ASKuS

and f], f2 and f3 are known input functions (see, for example, the right
hand side of (20)}. Note that aside from the simple Cauchy kernels, (35)
has kernels which become unbounded as the variables (t,x,r) approach the
point of irregular singularity (x=0=t=r). Thus, defining the unknown func-

tions by
(1) = =Ly - 20y o T
L o) 0 Pt

0<Re(0538k)<], (k=],2,3) s (37a-C)

and by using the function-theoretic technique described in [3], the charac-
teristic equations for B> By 33 and o may be obtained as follows:

cotng, = 0, (k = 1,2,3) (38)
by cosZma - (b,+8a-b4a?)cos? %%
~(bg-bgatbya?)sin? B = 0 , (39)

where

“12-
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1 = 8/ (1) by = 2(3+){k-1)/(x*1) ,
(40)

[}]

b3 8/ (x+1) . b4 = 2(3-k) , b5 = 16/{1+c)

Note that the properties of the inclusion {(as expressed by the constant Cs
in (36)) enter the integral equations (35) only through a Fredholm kernel
and, therefore, have no influence on the singular behavior of the solution,
and o is dependent on « or on the Poisson's ratio of the medium only. From
(38) it is seen that the acceptable roots are B = 0.5, (k = 1,2,3). The
numerical examination of (39) indicates that in this special case of & = %
we have 0.5<a<1, meaning that the stress state at r=0=x has a stronger singu-
larity than the conventional crack tip singularity of 1//r. This may be

due to the fact that in this problem two singular stress fields are combined.
at r=0. Also, it turns out that for O<v<5 the characteristic equation (39)
has two roots in O<Re{a)<1 and both are real. These roots are given in

Table 1 for various values of the Poisson's ratio.

Table 1. Powers of stress singularity o for a crack and
"~ an inclusion: a =0, ¢ =0, 8 = v/2 (Fig. 1).
piane strain plane stress
’ *1 %2 * %2
0.0 0.63627093 0 0.63627093 0
0.1 0.64489401 | 0.09571474 0.64408581 0.08990596
0.2 0.65405762 0.14825371 0.65095281 0.13249000
0.3 0.66352760 0.18953334 0.65695651 0.16176440
0.4 0.67270080 0.22567265 0.66217253 0.18404447
0.5 0.67996342 0.26027940 0.66666667 0.20196313

The stress intensity factors at the crack tip x=b, y=0 and at the end
of the inclusion x=0, y=d may be obtained by using the re]ations (26) and

(30).

factors are defined;

-13-~

At the singular point x=0, y=0 the following useful stress intensity
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k](O) = lim /2 x* cyy(-0,0) ,
x+0 (41a,b)
= 3 i+ -

for the crack, and

k-i(O) =1im vy p(0,+0) | (42)

for the inclusion.

4.2 The Special Case of 9 = %-, c=-d,a=0.

In this case the problem is further simplified by assuming "symmetric"
external loads (for example, o..=0 in (20))., Thus, the plane of the crack
is a plane of symmetry, h(x) = 0, and {20) would reduce to

b d
cyt c,tx?
l'f %&%} dt + %~J[ T (t§+X2)z]D(t)dt = f1(x), (O<x<b) ,

T t+x<
) )
b ) d
: ¢t c ty 1 L1
;‘J [t2+y2'+ (t2+y2)2]9(t)dt t o f EE:§'+ ey
0 0
t cgh(t-y)Ip(t)dt = fo{y) , (O<y<d) , (43a,b)

where, again the input functions fT and f3 are known and, for example, are

given in (20) (with c:y = 0} and the constants c;,...,c5 are defined by (36).
By defining
O LI ———TG?“:) 0<Re( )<1 (44)
gl B P = y U<hela,By.B8s)<
% (b-t)B1 £%(d-t)"2 ’

from (43) it may be shown that

cotg, =0, (k=1,2) , (45)

-14-
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COSwa*(C3 + %—c4a)(c1 - %‘Cza) =0 . (46}

From (45) it is seen that B = 0.5. A close examination of (46) shows that
it has only one root for which O<Re(a)<l. Furthermore, this root turns out
to be real and highly dependent on the Poisson's ratio (see Table 2). The
characteristic equation (46) and the roots given in Table 2 are identical
to those found in [8] where an infinitely Tong stringer in cracked plate
was considered.

Table 2. Power of stress singularity « at the crack-inclusion
intersection for e=w/2, c=-d, a=0 and for symmetric

Toading.
o4
v plane strain plane stress

0 ' 0 _ : 0

0.1 0.10964561 0.10263043
0.2 0.17432137 0.15468088
0.3 0.22678790 0.19132495
0.4 0.27392547 0.21972274
0.5 0.31955800 0.24288552

In this problem, too, the stress intensity factors for the crack and
the inclusion may be defined as in (41) and (42).

4.3 The Special Case of o=r, a=0, c=0

In this case the crack and the inclusion are on the x axis and occupy
(y=0, O<x<b) and (y=0, -d<x<0), respectively. Restricting our attention
again to the symmetric loading for which h(x) = 0 and observing that for
the variables along the inclusion r = -x, ry = -t, p(ro) = -px(t), the
integral equations of the. problem may be expressed as

~]5



1 ° t i 1<-1 ° px(t)
;-f 9t g . 1 f dt = £,(x) , (0<x<b)
0 -d :

°3 bg(t) 1 () c5
7[ t-x dat * ;;f v f P (t)dt = fo(x), (-d<x<0}  (47a,b)
0 -d -4

where the constants €4 and cg are defined by (36) and the known functions
f, and f3 are given by the right hand sides of (20a) and (20c) (with c:y=0).
If we now let

(t) h{t) (t) " (t) O<Re(asBy48,)<] (48)
s ——— 2 = s <kelo, 3 <l
T Rkt Y T e 1P

from (47) the characteristic equations for o, By and B, may be obtained as
follows:

cotmg, =0 , (k =1,2) , (49)
R

cos2ma = - (£0)° | (50)
2V

Equation (49) again gives g; = B, = 0.5. From (50) it may easily be seen
that o is complex and its value for which O<Re{a)<1 is found to be

@ =g+ 119 (51)
This value of « turns out to be identical to the power of singularity for a
perfectly rough rigid stamp with a sharp corner pressed against an elastic
half plane having « as an elastic constant [2] (e.g., k = 3-4y for the plane
strain case). At first this result may be somewhat unexpected. However,
upon closer examination of the problem first, from (47b) it may be seen
that the elasticity of the inclusion (i.e., the term containing the constant
c5) has no effect on the nature of the stress singularity. Thus, if one
assumes the inclusion to be inextensible, for the symmetric problem under
consideration it can be shown that the conditions in the neighborhood of the
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crack tip x=0, y=0, for example, for y<0, are identical to the conditions
around the corner of the stamp in the elastic half plane occupying y<0.

It, therefore, appears that for the elastic inclusion collinear with a
crack, the stress state around the common end point would have the standard
complex sihgu]arity found in the rigid stamp problem.

5. The Results

‘The crack-inclusion prob]em described in previous sections is solved
for a uniform stress state. 0 » (1,3=x,y)}, away from the crack-inclusion
region. For simplicity the resu1ts are obtained by assuming one stress com-
ponent (c:x or c;y or c:y) to be nonzero at a time. The solution for a
more general Toading may then be obtained by superposition. Even though
the stress state everywhere in the plane can be calculated after solving the
integral equations (e.g., (20}) and determining the density functions g,

h, and p, only the stress intensity factors are given in this section. For
nonintersecting cracks and inclusions the stress intensity factors defined

by (26) and (28) are normalized as follows:

' k-(X-)
ko(x) = ——1— | (i=(1,2); x;=(asb); o ~=(o,, o)) (52)
Y e 2y ooy
for the crack and
. ki(r.)
1 _ -k o

k.‘(l"‘j)-—k‘;’l—'s ko—m Ga d-¢}/2 ,

(rj = (C’d) b O'a = (O'yy: GXX’ ny)) (53)

for the inclusion.

Referring to Figure 1, for c=a, d=b, and (b/a)=5 the effect of the angle
6 on the stress intensity factors is shown in Table 3. These results are
given for two values of the stiffness parameter v defined by (21), namely
v=0 (the inextensible inclusion) and y=10.
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Table 3. Normalized stress intensity factors in a plane containing a
crack and an inclusion subjected to a uniform stress state c‘.’lf’-
away from the crack-inclusion region {c=a,d=b,a=b/5,Fig. 1). J

0

v | k' 1° 30° 60° 50° 120° 150° 180°

=0 ,0. =0

(a) Sy 0, Tyx Xy

ki{a) .8905 | 1.0083 { 1.0298 | 1.0049 9912} 1.0001 } 1.0076
kp(a) | ~.2152 | -.0098 | -.0661 | -.0830| -.0367| .0004 .0000
0 ki{b) | 1.0221 .9967 .9570 .9617 .9857{ 1.0007 ; 1.0033
.ké(b) .4327 | ~-.0065 | ~.0002 .0007} -.0001! .0001 .0000
ki(c) 9570 | -.3273 |-1.1324 {-1.3970{ -.8879| -.0310 | ..3850
kqo(d) | .8012 L1652 | -,6989 [-1.1134| -.7336| -.0428 .4320

k,(a) . 9691 .9999 | 1.0016 .9988 .99781 1.0000 | 1.0014
k;(a) - -.0517 | -.0047 | -.0136.] -.0153| -.0066] .0001 .0000
10 ki(b) .9862 .9997 .9919 .9928 .9973| 1.0000 | 1.0006
ka(b) .0742 | -.0020 | ,0001 .0005 .0002| .0000 .0000
.ki(c) 2619 § -.1277 | -.3979 | -.4735] -,2989| -.0220 .1106

ki(d) | -.0269 1001 | -.1848 | -.32691 -.2177] .0171 .1354

(b) GXX#O,Uyy=OQGXy=O

ki(a) 1237 .0704 | -.0034 | -.0034 .0008] -.0117 | ~.0203
ky(a) .2355 } .0122 .0052 .0310 0036 ~.0161 .0000
ki(b) | -.0806 | -.0365 .0036 .0142 .0074| -.0072 | -.0086

° ky(b) | -.5321 | -.0140 .0001 .0001 .0000{ -.0003 .0000
ki(c) -1.1068 | -.6949 .0766 4620 .0774| -.6988 |-1,0877
ki(d) [-1.4785 | -.6941 | - .0772 | ..4644| ..0776| -.6994 | -.0884
ki(a) .0385 .0106 { -.0005 | -.0001 .0002) -.0023 | -.0038
ksy(a) .0587 .0004 .0010 .0056 .0006| .0029 .0000

0 ki(b) -.0252 | -.0068 .0007 .0026 .0003{ -.0013 | -.0016

ka(b) | -.1128 | -.0030 .0000 . 0009 .0000¢{ .0000 .0000
ki(e) | -.3440 | -.2152 0239 .1432 .0239) -.2157 | -.3346
ki(d) | -.3885 | -.2154 .023% L1434 .02381 -.2157 | -.3347
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Table 3 - cont.

g

vy | k' 1° 30° 60° 90° 120° 150° 180°

) U;y#o,c;:x=0,cr:y=
ki(a) .1289 . 1428 .0669 | .0028 0134 .0223 {0.0000
s(a)] 1.0849 | 1.0180 .9054 | ,9950 | 1.0599 .0304 |1.0000
0 ki(b) L1641 | ~.0754 | -.0670 |-.0021 | 0.0231 .0136 {0.0000
ks(b)}{ 1.4055 .9685 .9974 | .9995 | 1.0005 .0005 [1.0000
ki(c)| -1.0246 |-1.6348 |-1.3085 | .0533 | 1.3767 .3606 |0.0000
ki(d)| 2.0539 [-1.3808 |-1.4661 |-.1076 | 1.2735 3117 | .0000
ki{a)} .0858 .0198 .0100 | .0010 .0032 .0043 .0000
ks(a)| 1.0527 .9967 .9826 | .9992 | 1.0108 .0054 |1.0000
10 k;(b) L1044 | -.0140 | -.0121 [-.0003 0043 .0025 .0000
ké(b). 1.1662 . 9929 .9994 | .9998 9999 .0000 |1.0000
ki(c) -.6916 | -.5492 | -.3731 .0557 A573 L4316 ¢ .0000
ki(d) 1.1639 | -.4179 | -,4533 {-.0342 .3912 .4029 | .0000
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Some sample results for an inclusion collinear with a crack (i.e,
for 8=0) are given in Table 4. Note that for this configuration under the

Table 4. Normalized stress intensity factors for an inclusion
collinear with a crack. Relative dimensions: =0,
d-c = b-a, ¢ = b+s. Applied leads: o%., (i,j=x,y)
(Fig. 1). W

- o s = (b-a}/100 s = (b-a)/2

N o‘_ij
y=0 y =10 y=0 y =10
ki(a) | -0.0202 | -0.0040 | -0.0019 | -0.0004
- ki(b) | -0.1338 | -0.0300 | -0.0027 | -0.0005
XX ki(e) -1.0482 -0.3296 -1.0889 -0.3347
ki(d) | -1.0845 | -0.3345 | -1.0889 | -0.3347
ki(a) 1.0047 1.0006 1.0008 1.0002
- ki (b) 1.0200 0.9987 1.0011 1.0002
vy | ki(e) | -0.0861 | -0.1571 0.4559 0.1397
ki(d) 0.3841 0.1273 0.4590 0.1413

Toads shown in the table, that is, for o, and s:x, because of symmetry
the Mode II stress intensity factors kz(a) and kz(b) are zero, Also, for
the shear loading c:y it is found that ké(a) = i, ké(b) =1 and kl(a) =
k](b) = k](c) = kl(d) = 0. This follows from the fact that in the cracked
plane under pure shear o__ the strain component sxx(x,o) is zero and '
hence an inextensible inclusion on the x axis would have no effect on the
stress distribution.

Another special configuration is an inclusion parallel to the crack
for which Table 5 shows some sample results. In the two special con-
figurations considered in Tables 4 and 6 the effect of the crack-inciusion
interaction on the stress intensity factors does not seem to be very sig-
nificant.

The results for an elastic medium for which xz plane is a plane of

symmetry with respect to the crack-inclusion geometry as well as the

5§a
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Table 5.

Normalized stress intensity factors in a plane containing an

inclusion parallel and equal in length to a crack, both symmetri-
cally located with respect to the y axis.
x axis and H is the distance between the crack and the inclu-

sion in y direction (Fig. 1).

R A ]
[DE-F 7 I A

The crack is along the

= o H = b-a H = 10(b-a)
W Y = 0 Y = 10 Y = 0 Y =10
ki(a)=k}(b) -0.0182 -0.0070 -0.0007 -0.0002
Tros ky(a)=-k5(b) 0.0281 -0,0011 | - 0.0006 0.0000
ki(c)=ki(d) -1.0834 | -1.0887 -0.0683 -0.0683
ki{a)=k}(b) 1.0063 1.0028 1.0004 1.000T
c;y ki(a)=-ki(b) | -0.0060 0.0004 -0.0001 0.0000
ki(e)=ki(d) | = 0.3917 | . 0.4387 0.0411 0.0276
ki(a)=-k}(b) | -0.0042 0.0000 ~0.0002 0.0000
c:y ky(a)=ks(b) 0.9965 1.0000 0.9998 1.0000
ki(c) -0.1131 0.0033 -0.0123 0.0004
ki(d) 0.1129 -0.0052 0.0123 -0.0006
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applied Toads are given in Figures 2-12. In this example the crack is per-
pendicular to the inclusion and the external Toad is a uniform tension par-
allel or perpendicular to the crack and away from the crack-inclusion region
(see the insert in the figures). The results shown in the figures are self-
explanatory. However, the solution also has some unusual features among
which, for example, one may mention the tendency of the crack tip stress
intensity factors k'(a) and k'(b) to "peaking" as v decreases and as d/2
increases (where 2d and 22 are the lengths of the inclusion and the crack,
respectively and y = 0 corresponds to an inextensible inclusion).

The results for the 1imiting case of the crack touching the inclusion
are given in Figures 8-12, In this case at the singular point x=0, y=0
the stress intensity factor k1(a) and the normalized stress intensity factor
k{(a) are defined by

(g(2) = Tim /2 3%, (x,0) . (x < 0) , (54)
lin_
ki(a) = k(a)/o3;v% o (i=(x,y); 2=b/2) B (55)

where the power of singularity o is given in Table 2. The results shown
in Figures 8-12 are obtained for v = 0,3.

The stress intensity factors for the other symmetric crack inclusion
problem, namely for the problem in which y axis is the Tine of symmetry
with regard to loading and geometry are given in Figures 13-28. In this
problem a=-g, b=z, d>c>0 and the external load is either c;y or c;x (see the
insert in Figure 13). Note that the figures show the crack tip stress
intensity factors at x=a=-% and k](b)=k1(a), kz(b)=-k2(a). Generally the
magnitude of k1(a) and kz(a) seem to increase with increasing Tength and
stiffness of the inclusion (i.e., with increasing (d-c)/2s2 and decreasing
vy = u(]+xs)/Asus(1+K), where Mg is the shear modulus of the inclusion).
Also, as expected, kl(c) and ki(d) describing the intensity of the stress
field at inclusion ends tend to increase as the stiffness of the inclusion
increases. However, their dependence on the relative Tength parameters is
somewhat more complicated (see, for example, Figure 16 for change in beha-
vior of the variation of k](d) at (d-c)/22=5}. Figures 13-20 show the effect
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of the inclusion length for constant crack length 2% and constant distance
¢ (Figure 13). The effect of the distance ¢ for constant inclusion and
crack lengths is shown in Figures 13-28.

The results of the nonsymmetric problem showing the effect of the rela-
tive location of the inclusion are shown in Table 6. Referring to Figure 1,
in these calculations it is assumed that & = %—, d-¢ = 22, ¢/22 = 0,1 and
a/2s is variable.

Finally, the stress intensity factors for the crack-inciusion inter-
section problem considered in Section 4.1 are given in Figures 29-43.
The normalized stress intensity factors shown in these figures are defined
by (see (41), (52) and (53))

' 1 . :
Kyp = —— lim v2{x-b] ¢, (x,0) ,
B o7 b y

t 1 .
kZB llg v2{x-b) sxy(x,o) s

c?j/f
i .[ ) [+
kin = lim /2 x* o, (-0,0) ,
B o %0 ¥
1]
Co_ 1 R, (56)
ko = Tim V2 x* _ (-0,0) ,
2A T AL x>0 Xy :
1]
] 1 .
ki = = Tim Y2(y=d) o__ (0.y) ,
1D k0 yd XX

- = o ,
kO moij Vd72 .
In this case too, generally the magnitude of the stress intensity factors
increases with increasing length and stiffness of the inclusion. However,
since the crack and the inclusion are located in each other's “shadow",

the relative dimensions seem to have considerable influence on the vari-
ation as well as the magnitude of the stress intensity factors.



Table 6. The effect of the relative location of inclusion on the stress
intensity factors; o = /2, (d-c)/22 = 1, ¢/22 = 0.1 (Figure 1).

i 5 k@) | ky(a) kj(b) | ky(b) | kj(e) | ki(d)
0.1 -0.0202 0.0430 0.06161 0.0003 0.4450 0.4471
0.0 -0.1033 0.0425 0.0133 (.0039 0.4192 0.4402
Gix -0.1 -0.0849 | -0.0044 (.0076 0.0081 0.3538 0.4285
-0.3 -0.0349 | ~0.0308 0.0023 0.0060 0.3348 | 0.4763
-0.5 -0.0363 | -0.0114 | -0.0363 0.0114 0.3195 0.4109
+0.1 1.0458 | -0.1396 0.9545 0.0012 | -1.5217 | -1.0543
0.0 1.2652 | -0.1090 0.9667 | -0.0078 | -1.2922 | -0.9497
d;y -0.1 1.1548 0.0064 0.9865 | -0.0150 | -0.5345 | -0.8136
-0.3 1.0448 0.0294 1.0013 | -0.0102 | -0.2308 | -0.6378
-0.5 1.0313 0.0129 1.0313 | -0.0129 | -0.1959 ; -0.5801
0.1 0.0098 0.9905 | -0.0033 0.9992 0.1050 | -0.1338
8.0 0.0493 0.9796 | -0.0065 0.9983 | -0.1734 | -0.1675
G:y -0.1 0.0463 1.0019 | -0.0041 0.9960 | -0.1054 | -0.1648
-0.3 0.0123 1.0066 | -0.0007 0.9971 | -0.0236 | -0.0977
-0.5 0 1 0 1 0 0
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Figure 1.

The geometry and notation for the crack-inclusion problem.
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Figure 16. Stress intensity factor at the inclusion end y=d; oyy # 0,
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Figure 17. Mode I stress intensity factor at the crack tip x=a=-2;
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Figure 23. Stress intensity factor at the inclusion end y
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Figure 33. Normalized stress intensity factor for the 1"56"11};‘1'76n-crack_
intersection problem for which 6 = /2, a =0, b =22, ¢ =0,
d/2% and y variables. k1D s o;’x 0.
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Figure 34. Normalized stress intensity factor forrr‘r themc]uswn-crack
intersection problem.for which 6 = 7/2, a =0, b =22, ¢c = 0,

d/22 and vy yar1ables. k]A e # 0.



Figure 35. Normalized stress intensity factor for the inclusion-crack
: intersection problem for which s = /2, a =0, b=22,c=0,
d/22 and v variables. kZA s ‘G;y # 0.
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Figure 36. Normalized stress intensity factor for the inclusion-crack

intersection problem for which 6 = »/2, a =0, b = 22, c = 0,

-]

d/22 and y variables. Kig » Iy #.0.



Figure 37. Normalized stress intensity factor_for the1nc1us1on—crack
intersection problem for which e = »/2, a =0, b = 2¢, ¢ = 0,
d/2% and y variables. kZB s cr;y #0. ‘ :
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intersection problem for which ¢ = n/2, a =0, b =22, ¢ =0,

d/2% and y variables. k.lD s ny # 0.

Figure 38. Normalized stress 1ntehsity factor for the }ﬁgfﬂéio&:é}ébimmm_wm"mm
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intersection problem for which 6 = »/2, a = 0, b = 22, c = 0,
d/2%2 and y variables. k]A s c;;:y # 0.

Figure 39. Normalized stress intensity factor for the inclusion-crack
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intersection problem for which 8 = 7/2, a =0, b =22, ¢c =0,

d/2¢ and v variables. Kop Oy #0.

Figure 40. Normalized stress intensity factor for the inclusion-crack =7~
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Figure 41. Normalized stress intensity factor for the 1nc1us1on crack

intersection problem for Wwhich e = v/2, a =0, b=22,¢c=0,
d/2¢ and y variables. k]B s o # 0.
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Figure 42. Normalized stress intensity factor for the inclusion-crack
intersection problem for which 8 = n/2, a =0, b = 22, ¢ = 0,
d/22 and v variables. kZB . c:y # 0.
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Figure 43. Normalized stress intensity factor for the inclusion-crack
' intersection problem for which 6 = n/2, a =0, b =28, ¢ =0,

d/2g and v variables. k1D . oiy‘# 0.
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APPENDIX B
A PLATE WITH AN INTERNAL FLAW UNDER
EXTENSION OR BENDING

1. Introduction

Some of the common flaws in pipe welds are planar internal flaws.
In studying the question of flaw evaluation in pipes containing multiple
flaws, an important problem is therefore the problem of interaction
between the internal planar flaws and between flaws and the free sur-
faces. The general three-dimensional elasticity problem is, at the
present time, analytically intractable. However, the previous studies
show that the application of the "line spring" model to surface cracks
in plates and shells seems to give results which agree with very limited
existing finite element results reasonably well [1,2].

The objective of this study is to extend the application of the
Tine spring model to internal cracks and, by comparing the results with
the existing finite element solutions, to establish its degree of accur-
acy. The broader aim is, of course, to use the technique in the inter-
action problems of multiple internal cracks the solution of which is
needed and is not available. After solving the single crack problem
-and showing that the stress intensity factors compare quite well with
the existing solutions, extensive results are obtained for an internal
crack with an elliptic or a rectangular boundary in a plate under exten-
sion or bending.

2. 0On the Formulation of the Problem

The formulation of the general problem follows very closely the
treatment given in [1]. In the"spec1a1 symmetric crack geometry and
symmetric loading shown in Fig. 1 the tension and bending problems
are uncoupled. Thus, the integral equations given in [1] would also
be uncoupled and the formulation and the method of solytion would remain
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Fig. 1 Geometry and notation for a plate containing an internal
planar crack.



the same. However, in order to solve the problem new stress intensity
shape functions 9 and 9 for the new crack'geometry under consideration
are needed. In terms of these functions the Mode I stress intensity
factor K along the crack front is given by

K(y) = /A [ge0(y) + gym(y)] (1)

where 9 and g, are functions of L/h and ¢ and m are defined by

oly) = MYL | py) = SMY) | (2)

In (1) and (2) y is the coordinate along the crack normalized with
respect to the half crack length 8, j.e., ¥y = x2/ao (Fig. 1 a,b),
and N(y) and M{y) are membrane and bending resultants along the net
ligament (Fig. 1c).

The unknown functions o(y) and m(y) are determined after solving
the integral equations [1], whereas the shape functions 9; and g, are
obtained from the corresponding plane strain problem (Fig. 1c). The
stress intensity factors KN and KM obtained from the solution of the
plane strain problem described in Fig. 1c¢ under membrane and bending
resuitants N and M are given by Table 1 [3].

Table 1. Stress intensity factors for centrally cracked
plate subjected to tension (N) or bending (M)
under plane strain conditions. (o=N/h, m=6M/h2)

KN Ky

L/h aval/2 myvrL/2
0.05 0.1500
0.1 1.0060 0.3000
0.2 1.0246 0.6004
0.3 1.0577 0.9031
0.4 1.1094 1.2135
0.5 1.1867 1.5435
0.6 1.3033 1.9179
0.7 1.4884 2.3918
0.8 1.8169 3.1113
0.9 2.585 4.6653
0.95

4.252 6.8526



In order to use in the analysis the results given in Table 1 must be
represented by analytic expressions. Thus, from (1) observing that

K= KN + KM s

KN=0"/F gt’ KM=TI'I1/h_ gb (3)

and by expressing

2(3-1)

g (L/h) = b, (L/h) . (4)

NS E
a—l

J

1

/aL/h
j“‘
gb(L/h) = yxL/h Cj(L/h) . (5)

S
—

J

The coefficients bj and c; may be obtained by curve-fitting (see Table 2).

3. The Results for a Single Crack

In the analysis used for the present study the contour of the planar
crack described by L = L(xz) or L = L{y) can be any function. If,

Table 2. The coefficients b; and Cj for the shape

functions gy and gp (Eqs.”4 and 5).
J by €3
1 0.7071 0.1013
2 0.4325 -2.7775
3 -0.1091 90.3734
4 7.3711 -862.4307
5 -57.7894 4843.4692
) 271.1551 -17069.1142
7 -744.,4204 38813.4897
8 1183.9529 -56865.3055
9 -1001.4920 51832.6941
1? 347.9786 -26731.2995
] .

5959.4888
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however, some subcritical crack growth takes place in the medium, the
contour defining the crack is usually a convex smooth function. Here

we will give examples for two contours, namely an ellipse and a rectangle,
which roughly speaking may be considered as the two limiting cases for
the shape such an internal crack may assume. The ellipse is defined

by
2 . 5 2
(xo/ay) +x37/(L,/2) =1 (6)
or

X9 = @, COSB 5 X = (L0/2) sine (7)
which, by observing that x2/a0 =y and L{y) = 2x3 (Fig. 1b), gives the
function L(y) as follows

L{y) = Ly/T-y% 5 (Sl<y<l). . (8)

For a rectangular contour it is simp1y assumed that L(y) = Lo’ (-T<y<1).
The stress intensity factors for a single crack calculated from (3)
after solving the integral equations and determining the functions o(y)
and m(y) are given in Tables 3-7 and Figures 2-9.

Table 3 shows the comparison between the stress intensity factor
at the midsection of a long internal elliptic crack (i.e., for y=0,
L=L0, a0<w) and that obtained from the corresponding plane strain solu-
tion (i.e., Table 1 or equations (3} and (4) with o=a,, L=Lgs ao=w) 1n
a plate under uniform tension S perpendicular to the crack surface( ).
Note that, as expected, the stress intensity factors K(Lgy) for the

*
(*) Ko shown in Table 3 is calculated from Eqs. (3) and (4) by using the
coefficients by given in Table 2.  Comparison of K, of Table 3 and
- Ky of Table 1 gives some idea about the accuracy of the curve
fitting, Eq. (4).



Table 3. Comparison of the stress intensity factor K(Lq) at the
center of an internal elliptic crack of length 2a, with
the corresponding plane strain value K. (for which ag=«)
in a plate under uniform membrane stress og=Ny/h.
K(L,) K(L_)-K
K, e 100 -~{%—~Jﬁ
 — agvml /2 ®
L. /h dov’TrL072 3 3 3
(a /L =)|a /L =10 |a /L =20 {a /L =100 |L> = 10 |p> = 20 |p> = 100
o’ "o o’ "o (i o' "o 1o 0 0
0.1 |1.005997 {0.999043 |0.995528 10.997353 -0.7 -1.0 ~0.9
0.2 |1.024588 |1.013152 |1.011516 [1.015310 -1.1 -1.3 -0.9
0.3 |1.057743 |1.041450 |1.041460 |1.047558 -1.5 -1.5 -1.0
0.4 |[1.709368 |1.091117 {1.089049 {1.098079 -1.6 -1.8 -1.0
0.5 |1.186659 {1.144763 |1.160564 |1.173659 ~3.5 -2.2 -1.1
0.6 }1.303310 |1.245248 (1.268245 |1.287556 -4.5 -2.7 -1.2
0.7 |[1.488234 |1.483155 |1.437816 |1.467902 -0.3 ~3.4 -1.4
0.8 |[1.815976 |1.747479 {1.733496 |1.786292 | -3.8 -4.5 -1.6
0.9 |2.579413 {2.271758 ;2.400426 {2.522210 {-11.9 -6.9 -2.2
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Table 4. Comparison of the stress intensity factors K(y) calcu-
' lated in this study at y=0 and y=1/2 (y=xo/a,) for an
internal planar elliptic crack in a plate_under uniform
tension oy with the corresponding values K(y) given in
Ref. 43 Ky = o‘ov/'rrLo72 .

L /h a /L K(y)/X R(y)/K £K 100
0 0 0 Y Y [o] Y (3] K
0.5 0 0.916 0.637 43.7
172 0.868 0.637 36.2
10 0 0.955 10.827 15.5
172 0.896 0.785 14.2
2 0 0 0.976 0.935 4.3
1 172 0.911 0.875 Kk
0.
0 0.983 0.967 1.7
3.0 1/2 0.916 0.902 1.6
20 0 0.987 0.980 0.6
172 0.919 0.914 0.5
. 10.0 0 0-993 0-999 ‘0.46
172 0.923 0.930 0.7
05 0 0.862 0.638 35.1
172 0.827 0.638 29.6
0 0.931 0.830 12.2
1.0 | "y 0.880 0.788 11.6
0 0.971 0.942 3.1
0.2 20
. 172 0.908 0.881 3.1
) 0.986 0.976 1.0
3.0 1/2 0.918 0.910 0.9




Table 4 - cont.

ik 1

| - 228 100
L,/h a /L, y - Ky)/K, R{y)/K, 7
1.0 0 0.993 0.991 0.2
0.2 1/2 0.923 0.923 0.0
10.0 0 1.007 1.013 0.6
1/2 0.933 0.942 -1.0
0;5 0 0.824 0.641 28.6
1/2 0.796 0.640 24.4
1.0 0 0.920 0.837 9.9
1/2 0.871 0.794 9.8
2.0 0 0.979 0.957 2.3
0.3 172 0.914 0.893 2.3
3.0 0 1.001 0.996 0.5
1/2 0.930 0.927". 0.3
2.0 0 1.012 1,014 -0.2
1/2 0.937 0.942 -0.5
10.0 0 1.034 1.041 -0.7
1/2 0.952 0.966 -1.5
0.5 0 0.798 0.645 23.6
1/2 0.775 0.644 20.3
1.0 0 0.920 0.851 8.1
| 1/2 0.871 0.804 8.3
0.4
2.0 0 1.000 0.984 1.6
1/2 0.929 0.915 1.6
3.0 0 1.030 1.031 -0.1
1/2 0.950 0.955 -0.4




Table 4 - cont.

= — 100
L,/h a /L, y K(y}/K, R{y)/K, %
4.0 0 1.047 1.054 -0.7
1/2 0.961 0.974 -1.3
0.4 :
10.0 0 1.078 1.091 -1.2.
1/2 0.982 1.005 -2.3
0.5 0 0.783 0.654 19.8
1/2 0.761 0.650 17.2
1o 0 0.932 0.874 6.7
1/2 0.880 0.821 7.3
2.0 0 1.036 1.030 0.6
1/2 0.956 0.949 0.7
0.5
3.0 0 1.078 1.090 -1.1
1/2 0.984 0.998 -1.4
4.0 0 1.107 1.121 -1.8
1/2 .998 1.023 -2.4
L 10.0 0 1.145 1.172 -2.4
- 1/2 1.025 1.063 -3.5
0.5 0 0.779 0.667 16.9
1/2 0.756 0.658 14.9
1.0 0 0.960 0.911 5.4
1/2 0.901 0.846 6.4
2.0 0 - 1.095 1.103 -0.8
1/2 0.997 0.999 -0.2
0.6
3.0 0 1-151 1-183 -2.7
1/2 1.033 1.061 -2.6
4'0 0 1¢]83 1.225 -3o5
1/2 1.052 1.092 -3.6
10.0 0 1.245 1.298 -4.0
1/2 1.088 1.143 -4.7




Table 4 - ‘cont.

L /h a /L y K(y)/K R{y)/K £E 100
0 Yo’ Fo. "0 YRy R
0.5 0 0.788 0.687 . 14.7
1/2 0.760 0.671 13.3
1'6 0 1.009 0.968 4.3
1/2 0.935 0.882 6.0
20 0 1.187 1.213 ~2.2
1/2 1.058 1.067 -0.8
0‘7
1.0 0 1.266 1.322 -4.2
1/2 1.106 1.144 -3.3
4.0 0 1.310 1.381 -5.1
1/2 1.132 1.183 -4.4
10.0 0 1.403 1.483 -5.4
1/2 1.179 1.242 =5.1
05 0 0.818 0.717 14.1
1/2 0.777 0.686 12.9
1.0 0 1.096 1.051 4.3
1/2 0.991 0.930 6.6
2.0 0 1-341 1-372 "2-3 )
0.8 1/2 1.152 1.152 0.0
) 3.0 0 1.457 1.521 -4.3
1/2 1.218 1.245 -2.2
1.0 0 1.525 1.603 -4.9
1/2 1.253 1.290 -2.9
10.0 0 1.674 1.747 -4.2
1/2 1.318 1.349 -2.3
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Table 4 - cont.

-«

K-K

_ 5 222 100
L,/h /L, y K(y)/KO‘ K(y)/Ko N 7
0.5 0 0.905 0.759 19.3
172 0.813 0.709 14.7
1.0 0 1.284 1.167 10.0
1/2 1.086 0.987 10.1
0.9 2.0 0 1.661 1.594 4.2
1/2 1.310 . 1.246 5,1
3.0 0 1.858 1.799 3.3
1/2 1.405 1.347 4.2
1.0 0 1.981 1.912 3.6
1/2 1.456 1.392 4.6




elliptic crack are consistently smaller than the plane strain values

Kool K(Lo)+K°° as a°/L0+w, and despite the approximate nature of the Tine
spring method used to calculate K(LO) the relative error is surprisingly
small.

Extensive results and formulas developed from the numerical solution
obtained from a finite element method for an internal elliptic crack in
a pltate under tension are given in [4]. Figures 2-9 and Table 4 show
the comparison of the stress intensity factors obtained from this study
with those generated from the formulas given in [4]. Again Ke is the
corresponding plane strain value given by Table 1 or Eq. (4) and the
normaljzing stress intensity factor is K, = cOVEI;7?l The table gives
the stress intensity factors calculated at y = 0 (the mid-section of
the ellipse) and y = 1/2 (or Xy = ao/2).. The table and the figures
show that with the exception of relatively smail values of aO/L0 at
small Lofh ratios (for which physically the line-spring is really not a
suitable model) the agreement is generally good.

Another comparison with the previous finite element resuits [5]
is shown in Table 5. It should be noted in the results given in Table 5

Table 5. Comparison of the stress intensity factors K(lg)
calculated in this study at the midsection of an
internal planar elliptic crack in a plate under
uniform tension o, with the corresponding results
K given in [6]; Ko=ogvmLo/2, y=xp/ag=cose (Egs.
6-8), Lg/h=0.75, ap/Lo=1.25.

. K-K
8 y | Rk K(L,)/K, 100 25
90° 0 0.985 1.120 13.7
80° 0.174 0.971 1.103 13.6
70° 0.342 0.944 1.052 1.4
60° 0.500 0.898 0.973 8.4
45° 0.707 0.810 0.832 2.7
40° 0.766 0.770 0.742 -3.6
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Table 6. Stress intensity factors in a plate containing a rectangu-

Tar planar crack and subjected to uniform tension g

L0 : ao/Lo
" Y 0.5 1.0 2.0 3.0 4.0 10.0
0.1 0 0.975 | 1.015 | 1.053 | 1.078 | 1.098 | 1.172
0.6 | 0.946 | 1.001 | 1.046 | 1.073 ! 1.095 | 1.170
0.2 0 0.931 | 0.991 | 1.033 | 1.055 | 1.071 | 1.134
0.6 | 0.879 | 0.962 ! 1.018 | 1.045 1 1.064 | 1.131
0.3 0 0.901 | 0.988 | 1.040 | 1.064 | 1.080 | 1.137
0.6 | 0.831 | 0.943 | 1.017 | 71.048 ! 1.069 | 1.133
0.4 0 0.883 | 0.998 | 1.067 | 1.096 | 1.113 | 1.169
0.6 | 0.798 | 0.938 | 1.033 | 1.073 | 1.096 | 1.162
0.5 0 | 0.875 | 1.024 | 1.115 | 1.151 | 1.172 | 1.231
0.6 | 0.777 | 0.947 | 1.068 | 1.118 | 1.147 | 1.221
0.6 0 0.879 | 1.068 | 1.192 | 1.239 | 1.266 | 1.333
0.6 | 0.768 | 0.973 | 1.128 | 1.193 | 1.230 | 1.318
0.7 0 0.899 | 1.142 | 1.313 | 1.378 | 1.416 | 1.500
0.6 1 0.774 | 1.023 | 1.225 | 1.313 | 1.364 | 1.478
0.8 0 0.946 | 1.269 | 1.520 | 1.623 | 1.680 | 1.800
0.6 | 0.803 | 1.116 | 1.393 | 1.522 | 1.597 | 1.764
0.9 0 1.068 | 1.542 | 1.969 | 2.162 | 2.271 | 2.496
0.6 10.892 | 1.326 | 1.760 | 1.981 | 2.115 | 2.420
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Table 7.

Lol

Normalized stress intensity factors K(y)/K, in a plate :
containing a symmetrically Tocated e'i'l1pt1c or rectangular
planar crack and subjected to pure bending My; y= Xp/2ys

Ko = (6Mg/h2)/alg72.

ELLIPTIC CRACK RECTANGULAR CRACK
L ! aol I‘0 ao/ Lo
]
h!lY {05 | 1.0 |20 /40 |05 |1.0 {2.0 |4.0
970 0.296 10.267 [0.297 |0.297 ||0.353 [0.360 |0.382 |0.390
0.2 lo.288 |0.288 |0.289 [0.289 l{0.353 {0.369 {0.382 ]0.390
0.1 |0.4 10.261 [0.261 [0.261 10.262 ||0.353 10.369 [0.382 [0.390
0.6 10.214 10.214 10.214 |0.214 ||0.353 [0.369 |0.382 {0.390
0.8 1l0.135 10.135 10.135 |0.135 {|0.352 |0.369 [0.382 0.390
0.9 |0.090 [0.090 10.090 {0.090 |{0.351 [0.368 [0.381 |0.390
5.0 110,788 10.834 10.859 10.873 |[0.860 |0.896 [0.929 [0.969
0.2 ||0.775 |0.816 |0.838 |0.850 |{0.858 [0.895 10.928 |0.969
0.3 10.4 [l0.728 |0.756 {0.770 |0.778 {|0.850 [0.891 [0.927 |0.968
0.6 10.635 |0.643 |0.646 |0.649 |l0.832 {0.882 |0.923 |0.966
0.8 10.432 |0.427 10.419 |0.417 [|0.773 10.849 {0.907 |0.958
0.9 110.290 |0.280 |0.275 10.273(/0.685 |0.790 |0.873 |0.942
5.0 70,948 11.122 11.248 171.347 {[1.107 |1.264 |1.373 |1.467
0.2 10.948 11.113 {1.231 {1.317 |11.098 |1.258 {1.370 |1.464
0.5 10.4 10.941 11.079 |1.171 {1.234 |\1.064 |1.236 [1.357 [1.454
0.6 110.912 10.994 11.040 11.069 [/0.993 [1.186 [1.327 [1.433
0.8 [0.746 |0.736 10.723 [0.715 [{0.827 |1.044 {1.232 [1.374
10.9 1{0.556 10.511 10.485 l0.472 |{0.657 {0.871 [1.087 |1.275
0.0 110,846 [1.779 17.382 |1.643 ||1.001 |1.313 [1.613 |1.904
~ 10.2 110.856 |1.125 [1.381 [1.629 10.987 {1.307 {1.602 {1.893
0.7 0.4 {0.884 [1.139 |1.369 |1.574 [ 0.944 |1.261 |1.567 |1.857
"/ 10.6 110.934 [1.147 |1.318 11,446 {|0.856 |1.174 |1.491 |1.782
0.8 110.929 {1.010 |1.046 |1.056 [[0.675 |0.971 [1.300 |1.671
1o0.9 lo.836 j0.802 |0.761 |0.728 [|0.514 [0.765 [1.074 |1.400
0.0 10,712 1,037 |1.436 |1.952 |0.895 |1.224 [1.758 12.457
0.2 110.713 |1.029 {1.422 |1.915 [{0.813 |1.210 [1.739 |2.431
0.9 (0.4 [0.739 [1.051 |1.421 |1.852 |0.772 |1.162 |1.679 |2.345
¥ 10.6 10.814 [1.118 |1.447 |1.772 }{0.692 |1.065 |1.559 |2.180
0.8 10.926 }1.149 |1.329 |1.443 1{0.534 |0.854 |1.300 |1.853
0.9 116.979 |1.061 |1.086 [1.070 [0.400 [0.656 !1.036 [1.632




Table 6 shows.the stress intensity factors in a plate containing
a rectangular planar crack and subjected to uniform tension Oy Referring
to Fig. 1b, in this case the crack is defined by
L L
“zg“’%"zQ > T8 < Xy < ay
One may note that, as expected, the stress intensity factors for the
rectangular crack are generally somewhat dreater than the corresponding

values for an elliptic crack.

elliptic or rectangular planar crack and subjected‘to pure bending

(Fig. Ta) are given in Table 7. It should again pe noted that for larger
values of y and smaljep values of ao/L0 the Iine-spring'model which is
used to calculate these results is not a suitable model. Table 7 shows
the stress intensity factor along the border of the crack on the tension
side of the plate. On the compression side the stress intensity factors
have the same valyes with. a negative sign. Under pure bending since the
crack faces on the compression side of the plate would close, the results
given in the table cannot be used separately. The results are, of course,
useful and valid if the plate is subjected to tension, as well as bending
in such a way that the superimposed stress intensity factor is positive
everywhere. '
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